1-20 of 110 Search Results for

tin-antimony alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... Abstract The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
... breakdown of the supersaturated solution during storage. Although this breakdown produces coarse structures in certain alloys (lead-tin alloys, for example), it produces fine structures in others (such as lead-antimony alloys). In alloys of the lead-tin system, the initial hardening produced by alloying is...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... adheres to many common base metals at temperatures considerably below their melting points. Tin is alloyed with lead to produce solders with melting points lower than those of either tin or lead. Small amounts of various metals, notably antimony and silver, are added to tin-lead solders to increase their...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003818
EISBN: 978-1-62708-183-2
... has not been found to affect the corrosion resistance of tin-lead alloys appreciably ( Ref 2 ). Also, the behavior of lead-free solders containing silver or antimony with tin does not differ greatly from that of pure tin. By definition, modern pewter is an alloy that contains 90 to 98% Sn, 1...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals. thermal conductivity aluminum aluminum alloys copper copper alloys iron iron alloys lead lead alloys magnesium magnesium alloys nickel nickel alloys tin tin alloys titanium titanium...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
... and with as-cast dimensions reproducible to 0.025 mm (0.001 in.), are possible, Antimony, tin or arsenic, and other elements, may be alloyed with lead to produce certain properties such as castability, strength, or greater hardness. Lead shot is produced by taking advantage of the fact that the...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
... Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges. linear...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
... Abstract This article contains a table that lists the density of metals and alloys. It presents information on aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc, an their respective alloys. Information on wrought alloys, permanent magnet materials, precious metals, and...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006543
EISBN: 978-1-62708-183-2
... 80Ni-20Cr … 8.4 0.30 60Ni-24Fe-16Cr … 8.247 0.298 35Ni-45Fe-20Cr … 7.95 0.287 Constantan … 8.9 0.32 Tin and tin alloys Pure tin L13002 7.3 0.264 Soft solder  30% Pb … 8.32 0.301  37% Pb … 8.42 0.304 Tin babbitt  Alloy 1 … 7.34 0.265  Alloy 2...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
..., alternate etching with polishing. Macroetching of lead; development of microstuctures and grain boundaries in lead, and in lead-calcium, lead-antimony, and lead-tin (low-Sn) alloys 1 part nitric acid (conc) 4 parts glycerol 2 100 parts acetic acid (glacial) Etch for 10–30 min, depending on the...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003819
EISBN: 978-1-62708-183-2
... in specific chemical and architectural applications. The ability of some antimonial leads to retain this greater mechanical strength in atmospheric environments has been demonstrated in exposure tests in which sheets containing 4% Sb and smaller amounts of arsenic and tin were placed in...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... Abstract This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
.... Permanent mold casting is best suited for tin, silicon, aluminum and manganese bronzes, and yellow brasses. Dies casting is well suited for yellow brasses, but increasing amounts of permanent mold alloys are also being die cast. Size is a definite limitation for both methods, although large slabs weighing...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003137
EISBN: 978-1-62708-199-3
... of copper may be dissolved and affect taste or color of the products. In such cases, copper alloys are often tin coated. (b) Acetylene forms an explosive compound with copper when moisture or certain impurities are present and the gas is under pressure. Alloys containing less than 65% Cu are...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003131
EISBN: 978-1-62708-199-3
... not to the same degree as the unalloyed parent metal. Even alloys with large amounts of solution-hardening elements—zinc, aluminum, tin, and silicon—that show rapid work hardening are readily commercially processed beyond 50% cold work before a softening anneal is required to permit additional...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
..., cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys. aluminum alloys copper copper alloys heat treatment...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003816
EISBN: 978-1-62708-183-2
... ionic or electronic conductivity of the film by doping with divalent or trivalent cations should improve corrosion resistance. In practice, alloying additions of aluminum, zinc, tin, iron, and nickel are used to dope the corrosion product films, and they generally reduce corrosion rates significantly...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003829
EISBN: 978-1-62708-183-2
... 2 Vinyl chloride, pure 500 930 <0.05 2 Gold is attacked by all low-melting alloys, including mercury, sodium, potassium, lead, tin, bismuth, and iridium. The standard electrode potential for gold (Au↔Au + + e − ) is +1.68 V, the highest of all precious metals. Gold does not...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... improved by the addition of small amounts of elements including beryllium, silicon, nickel, tin, zinc, chromium, and silver. When casting copper alloys, the lowest possible pouring temperature needed to suit the size and form of the solid metal should be adopted to encourage as small a grain size as...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... (1830) E Lithium … to 1000 (1830) E Magnesium … to 1150 (2100) E Mercury … to 600 (1110) E Potassium … to 900 (1650) E Sodium … to 900 (1650) E Sodium-potassium alloys … to 900 (1650) E Zinc … to 500 (930) E/V Tin … … V Uranium … … V Mg-37Th In...