Skip Nav Destination
Close Modal
By
A.C. Tan
By
Kumar Sadayappan, Mahi Sahoo, Harold T. Michels
By
Te-Lin Yau, Richard C. Sutherlin
Search Results for
tin chemicals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 870
Search Results for tin chemicals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Combination of a chemical vapor deposition TiN-TiCN coating and a physical ...
Available to PurchasePublished: 01 January 1994
Fig. 7 Combination of a chemical vapor deposition TiN-TiCN coating and a physical vapor deposition TiN coating on a cobalt-enriched cemented carbide insert
More
Image
Wear of combined chemical vapor deposition (CVD) TiN-coated + induction sur...
Available to PurchasePublished: 09 June 2014
Fig. 58 Wear of combined chemical vapor deposition (CVD) TiN-coated + induction surface-hardened steel D2 (10 kW, 18 s air, and nitrogen/oil). IH, induction heated. Source: Ref 51
More
Book Chapter
Tin and Tin Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
.... It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... in the United States by application. 1988 data. Source: U.S. Bureau of Mines Abstract Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Book Chapter
Corrosion in the Assembly of Semiconductor Integrated Circuits
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004172
EISBN: 978-1-62708-184-9
.... It discusses the chip corrosion and oxidation of tin and tin-lead alloys (solders) in SIC. The article also addresses the corrosion of the device terminations resulting in lead (termination) tarnishing that are caused by various factors, including galvanic corrosion, chemical residues, base metal migration...
Abstract
In a typical semiconductor integrated circuits (SICs) component, corrosion may be observed at the chip level and at the termination area of the lead frames that are plated with a solderable metal or alloy, such as tin and tin-lead alloys that are susceptible to corrosion. This article focuses on the key factors contributing to corrosion of electronic components, namely, chemicals (salts containing halides, sulfides, acids, and alkalis), temperature, air (polluted air), moisture, contact between dissimilar metals in a wet condition, applied potential differences, and stress. It discusses the chip corrosion and oxidation of tin and tin-lead alloys (solders) in SIC. The article also addresses the corrosion of the device terminations resulting in lead (termination) tarnishing that are caused by various factors, including galvanic corrosion, chemical residues, base metal migration and plating additives.
Book Chapter
Electrodeposition Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... Abstract Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... Abstract Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses...
Abstract
Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling.
Book Chapter
Lead and Lead Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
... systems. Pipe for these applications is made from either chemical lead or 6% antimonial lead. Sizes range from fine tubing to pipes 300 mm (12 in.) or more in diameter, with almost any wall thickness. Solders Solders in the tin-lead system are among the most widely used of all joining materials...
Abstract
This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest use of lead is in lead-acid storage batteries. Other applications include ammunition, cable sheathing, cast products such as type metals, terneplate, foils, and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability. The article concludes with information on the principles of lead corrosion, corrosion resistance of lead in water, atmospheres, underground ducts, soil and chemicals.
Image
Anodic polarization curves for selected coating systems. (a) TiN deposited ...
Available to PurchasePublished: 01 January 1994
Fig. 9 Anodic polarization curves for selected coating systems. (a) TiN deposited on 304 stainless steel by plasma-assisted chemical vapor deposition. Curves for TiN deposited on glass and for the uncoated base metal are provided for comparison. Environment: 1 M /L HCl. Source: Ref 25 . (b
More
Book Chapter
Chemical Vapor Deposition and Related Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... coatings are multilayer systems that combine TiN for lubricity and galling resistance, Al 2 O 3 for chemical inertness and thermal insulation, and TiC and carbonitride for abrasion resistance. A comparison of coatings for cutting tools is given in Table 3 . Selected wear and corrosion properties of CVD...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001273
EISBN: 978-1-62708-170-2
... casting cleaning fluxing metal spray babbitting sliding shaft soft metals static babbitting stiffener tinning workpiece preparation BABBITTING is a process by which relatively soft metals are bonded chemically or mechanically to a stronger shell or stiffener, which supports the weight...
Abstract
Babbitting is a process by which relatively soft metals are bonded chemically or mechanically to a stronger shell or stiffener which supports the weight and torsion of a rotating, oscillating, or sliding shaft. This article focuses on workpiece preparation and babbitting methods. Prior to casting, the workpiece must be scrupulously prepared by various cleaning, fluxing, and tinning steps. Babbitting of bearing shells can be accomplished by three methods, namely, static babbitting, centrifugal casting, and metal spray babbitting.
Book Chapter
Copper and Copper Alloy Castings
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... are highly resistant to corrosion, so the alloys are used in the chemical, petroleum, food, and dairy industries. Nickel improves the quality, strength, and creep resistance of tin bronze and semired brass castings and is more effective than lead in improving pressure tightness. Beryllium Beryllium...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... Abstract A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Book Chapter
Dip, Barrier, and Chemical Conversion Coatings
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
... Abstract There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes...
Abstract
There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes continuous electrodeposition for steel strip and babbitting and discusses phosphate and chromate conversion coatings as well. It also addresses painting, discussing types and selection, surface preparation, and application methods. In addition, the article describes rust-preventive compounds and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating.
Book Chapter
Corrosion of Zirconium and Zirconium Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003823
EISBN: 978-1-62708-183-2
... of zirconium. chemical properties corrosion crevice corrosion erosion-corrosion fretting corrosion galvanic corrosion intergranular corrosion mechanical properties microbiologically induced corrosion microstructures pH physical properties pitting corrosion temperature tin zirconium...
Abstract
This article provides a description of the classification, industrial applications, microstructures, physical, chemical, corrosion, and mechanical properties of zirconium and its alloys. It discusses the formation of oxide films and the effects of water, temperature, and pH on zirconium. The delayed hydride cracking of zirconium is also described. The article provides information on the resistance of zirconium to various types of corrosion, including pitting corrosion, crevice corrosion, intergranular corrosion, galvanic corrosion, microbiologically induced corrosion, erosion-corrosion, and fretting corrosion. The article explains the effects of tin content in zirconium and effects of fabrication on corrosion. Corrosion control measures for all types of corrosion are also highlighted. The article concludes with information on the safety precautions associated with handling of zirconium.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
.... (g) By agreement between the purchaser and the supplier, bismuth levels up to 0.150% may be allowed. (h) Arsenic, antimony, and tin each at 0.001% max. (i) Chemical lead designates the undesilverized lead produced from southeastern Missouri ores. (j) Copper-bearing lead is made by adding...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Image
Chemical vapor deposition coatings. (a) Cemented carbide insert with TiC co...
Available to PurchasePublished: 01 January 1994
Fig. 3 Chemical vapor deposition coatings. (a) Cemented carbide insert with TiC coating. Note eta phase at the coating-substrate interface. (b) 73WC-19(Ti,Ta,Nb)C-8Co alloy with a TiC/TiCN/TiN coating about 10 μm thick. (c) 85WC-9(Ti,Ta,Nb)C-6Co alloy with a TiC/Al 2 O 3 coating about 9 μm
More
Image
83.5WC-10.5(Ta,Ti,Nb)C-6Co alloy, 92 HRA. This cobalt-enriched alloy is coa...
Available to PurchasePublished: 01 December 2004
Fig. 33 83.5WC-10.5(Ta,Ti,Nb)C-6Co alloy, 92 HRA. This cobalt-enriched alloy is coated with chemical-vapor-deposited TiN/TiCN and physical-vapor-deposited TiN (gold coating on top) layers. Murakami's reagent, 1 min. 1500×.
More
Image
Multilayer chemical vapor deposition coatings on cobalt-enriched substrates...
Available to PurchasePublished: 01 January 1994
Fig. 4 Multilayer chemical vapor deposition coatings on cobalt-enriched substrates. (a) 86WC-8(Ti,Ta,Nb)C-6Co alloy with cobalt-enriched periphery and a TiC/TiCN/TiN coating. (b) Second-generation cobalt-enriched cemented carbide tool with TiC/Al 2 O 3 /TiN coating
More
Image
90.5WC-3.5(Ta,Ti,Nb)C-6Co alloy, 92 HRA, coated with multilayer hard coatin...
Available to PurchasePublished: 01 December 2004
Fig. 21 90.5WC-3.5(Ta,Ti,Nb)C-6Co alloy, 92 HRA, coated with multilayer hard coating. Microstructure shows (from bottom) cemented carbide substrate, TiN, TiCN, Al 2 O 3 , and TiN layers coated by the chemical vapor deposition process. Murakami's reagent, 1 min. 1500×.
More
1