Skip Nav Destination
Close Modal
Search Results for
tin alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1060 Search Results for
tin alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003818
EISBN: 978-1-62708-183-2
... behavior on soft solders, pewter, bearing alloys, tin-copper alloys, and tin-silver alloys. It reviews the influence of corrosion on immersion tin coating, tin-cadmium alloy coatings, tin-cobalt coatings, tin-copper coatings, tin-lead coatings, tin-nickel coatings, and tin-zinc coatings. The general...
Abstract
This article describes the allotropic modification and atmospheric corrosion of pure tin. Corrosion of pure tin due to oxidation reaction, and reaction with the other gases, water, acids, bases, and other liquid media, is discussed. The article provides information on corrosion behavior on soft solders, pewter, bearing alloys, tin-copper alloys, and tin-silver alloys. It reviews the influence of corrosion on immersion tin coating, tin-cadmium alloy coatings, tin-cobalt coatings, tin-copper coatings, tin-lead coatings, tin-nickel coatings, and tin-zinc coatings. The general properties and corrosion resistance of tinplate are summarized. The article also describes the methods of corrosion testing of coatings; these include an analysis of coating thickness measurements, porosity and rust resistance testing, solderability test, and specific special tests.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003778
EISBN: 978-1-62708-177-1
... Abstract This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information...
Abstract
This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information on etchants for tin and tin alloys in tabular form. It presents the procedure recommended for electron microscopy to determine the nature of the intermetallic compound formed by the reaction between tin or tin-lead coatings on various substrates. The article concludes with an illustration of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
.... It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... Ag 245 473 221 430 Soldering of components for electrical and high-temperature service Tin-silver eutectic alloy B 32, Grade Sn96 QQ-S-571, Grade Sn96 … … 96 Sn, 3.5 Ag 221 430 221 430 Popular choice with properties similar to those of ASTM B 32, Grade Sn95 Soft solder (70-30...
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Image
Published: 01 December 2008
Image
in Physical Metallurgy Concepts in Interpretation of Microstructures
> Metallography and Microstructures
Published: 01 December 2004
Fig. 7 Classic example of eutectic system in lead-tin alloys. Diagram contains the more scientifically useful atomic %. Weight % is shown at the top. Source: Ref 2 , 3
More
Image
Published: 15 June 2020
Fig. 8 Representative microstructures of copper-tin alloys processed with laser powder-bed fusion. Note that the magnification is different in each image. For each composition, the microstructure consists of columnar grains aligned with the build direction. (a) Cu-4Sn is entirely α-Cu(Sn
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001256
EISBN: 978-1-62708-170-2
... Abstract Electrodeposition of tin alloys is used to protect steel against corrosion or wear, to impart resistance to etching, and to facilitate soldering. This article focuses on the compositions, operating conditions, advantages, and limitations of methane sulfonic acid plating solutions...
Abstract
Electrodeposition of tin alloys is used to protect steel against corrosion or wear, to impart resistance to etching, and to facilitate soldering. This article focuses on the compositions, operating conditions, advantages, and limitations of methane sulfonic acid plating solutions and fluoborate plating solutions for tin-lead. It briefly describes the solution compositions and operating conditions of tin-bismuth, tin-nickel, and tin-zinc.
Image
Published: 01 December 2004
Fig. 38 From top: electroplated 0.013 mm (0.0005 in.) overlay of lead-tin alloy (SAE 191), sintered copper-lead alloy (SAE 49) liner, and steel backing. See also Fig. 39 . NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 January 1986
Image
Published: 01 December 2004
Fig. 27 Tin alloy with 10% Sb, cast in sand. Primary grains of a β-phase (white squares) on a background of a peritectic α-phase. At the boundaries, secondary β (SnSb) is prominent, which is formed because of a decrease in the solubility of antimony from solid solution. Source: Ref 2
More
Image
Published: 01 January 2003
Fig. 10 Effect of tin on internal resistance of lead alloys or lead grids with a tin-rich coating during overcharge conditions in a lead-acid battery. Source: Ref 10
More
Image
Published: 01 December 2004
Fig. 1 Very soft metals; alloys of lead and tin. (a) and (b) A near-eutectic soft solder (63% Sn, 37% Pb; hardness, 9 HV). A globular eutectic of tin phase (light) and lead phase (dark). (c) and (d) A linotype metal (4% Sn, 12% Sb, 84% Pb; hardness, 26 HV). Primary lead dendrite in a ternary
More
Image
Published: 31 December 2017
Fig. 3 Type I microstructure present in lead and tin Babbitt bearing alloys. (a) Schematic showing discrete hard particles dispersed in a soft matrix that is bonded to a steel backing. (b) Micrograph of a lead-base Babbitt in which lead is present in the dark phase and antimony in the light
More
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals. thermal conductivity aluminum aluminum alloys copper copper alloys iron iron alloys lead lead alloys magnesium magnesium alloys nickel nickel alloys tin tin alloys titanium titanium...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... Abstract This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006551
EISBN: 978-1-62708-210-5
... to their relatively low hardness, which favors large plastic deformation under sliding conditions. This article discusses the classes and mechanisms of wear in aluminum-silicon alloys, aluminum-tin bearing alloys, and aluminum-matrix composites; describes the effect of material-related parameters on wear behavior...
Abstract
Aluminum alloys are widely used in engineered components because of their excellent strength-to-weight ratio. Their use in applications requiring wear resistance is more limited. One of the main limitations of aluminum alloys is the poor tribological behavior mainly due to their relatively low hardness, which favors large plastic deformation under sliding conditions. This article discusses the classes and mechanisms of wear in aluminum-silicon alloys, aluminum-tin bearing alloys, and aluminum-matrix composites; describes the effect of material-related parameters on wear behavior of these alloys; and reviews their applications in a variety of tribological applications in the automotive industry ranging from aluminum-tin alloys for plain bearings to alloys with hard anodizing for machine elements. Methods to improve wear resistance and alloy hardness are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006412
EISBN: 978-1-62708-192-4
..., bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional...
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article discusses the properties of bearing materials. It provides information on bearing material systems: single-metal systems, bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional metallic materials, nonmetallic materials. It describes casting processes, powder metallurgy processes, and electroplating processes. The article also discusses the selection criteria for bearing materials.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
..., cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys. aluminum alloys copper copper alloys heat treatment...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... Abstract This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM...
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
1