Skip Nav Destination
Close Modal
By
Arun Sreeranganathan, Douglas L. Marriott
By
Stephen F. Duffy, Lesley A. Janosik
By
C. Schwenk
By
David Broek
By
Horst Czichos, Mathias Woydt
By
George T. (Rusty) Gray, III, William R. Blumenthal
By
Kong Ma, Robert Goetz, Shesh K. Srivatsa
By
P.R. Roberge
By
Brian G. Thomas
Search Results for
time-dependent stress analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1691
Search Results for time-dependent stress analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Elevated-Temperature Life Assessment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots. creep curve creep testing elevated-temperature life assessment heater tubes high-temperature components hydrogen attacks remaining-life...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009218
EISBN: 978-1-62708-176-4
... and the rational polynomial creep equation are discussed. The article also describes the dependence of stress and temperature on equation parameters and explains the lot-centered regression analysis. creep creep-rupture data exponential creep lot-centered regression analysis rational polynomial creep...
Abstract
This article presents typical problems encountered in the analysis of experimental creep and creep-rupture data and the possible solutions to these drawbacks. It provides information on planning the test and creep strain/time relationships. The exponential creep equation and the rational polynomial creep equation are discussed. The article also describes the dependence of stress and temperature on equation parameters and explains the lot-centered regression analysis.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005506
EISBN: 978-1-62708-197-9
.... Discussion/Summary Stress-relief simulation can be as simple as applying empirical material models with analytical solutions to as complex as nonlinear time-dependent FE analysis with a physics-based microstructural model written into a user subroutine. The best approach is to start with a simple model...
Abstract
This article summarizes many approaches that are used to simulate relaxation of bulk residual stresses in components. It presents analytical examples to highlight the complexity of residual stress and strain distributions observed in simple geometries, with ideal material behavior and trivial loading and boundary conditions. The article discusses approximate and advanced solution techniques that can be employed in practice for simulation of residual stress relief: finite-difference method and finite-element method. It also describes advanced techniques applicable to transient creep, advanced constitutive models, and complicated stress and temperature loading histories.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002477
EISBN: 978-1-62708-194-8
... performance of plastic parts. As shown in Fig. 8 , the deformation map provides the material response that can be combined with a linear elastic, time-independent analysis (in this case a finite-element stress analysis) to predict the time-dependent deformation. Validation of this approach is demonstrated...
Abstract
The key to any successful part development is the proper choice of material, process, and design matched to the part performance requirements. Understanding the true effects of time, temperature, and rate of loading on material performance can make the difference between a successful application and catastrophic failure. This article provides examples of reliable material performance indicators and common practices to avoid failure. Simple tools and techniques for predicting part mechanical performance integrated with manufacturing concerns, such as flow length and cycle time, are demonstrated. The article describes the prediction of mechanical part performance for stiffness, strength/impact, creep/stress relaxation, and fatigue.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002390
EISBN: 978-1-62708-193-1
..., for which the crack growth rates at any frequency will be totally time dependent. To further understand the complex interaction mechanisms of stress, temperature, time, and environmental exposure, a vast amount of experimental and analytical data was compiled (from a bibliography of 42 references...
Abstract
The approaches to spectrum life prediction in components can be classified into two types, namely, history-based methods, using the life-fraction rule or other damage rules, and postservice evaluation methods. This article discusses the variables affecting the material crack growth rate behavior and those essential elements in making spectrum crack growth life prediction. It provides information on life assessment for bulk creep damage.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Book Chapter
Design with Brittle Materials
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002385
EISBN: 978-1-62708-193-1
... as a function of Δ K (calculated from Δ K = βΔσ π a ), the dependence on Δ K is obtained, and in a similar fashion, tests at different R stress ratios provide the dependence on R. Crack size as a function of time (number of cycles) is obtained by integration: (Eq 9) N = ∫ a 1...
Abstract
This article illustrates the role that fracture mechanics can play in failure analysis. It describes the important failure criteria as relations between design and materials factors, which are used to correlate fracture mechanics analysis to the observations of a failure analysis. Descriptions include an indication of how the factors are typically evaluated. The article also provides information on subcritical fracture mechanics. Finally, a group of failure analysis examples explain how fracture mechanics parameters can be determined and how they may be fitted into an overall failure investigation.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006676
EISBN: 978-1-62708-213-6
... (sinusoidal) mechanical stress, which causes it to undergo deformation with the same period. The dynamic mechanical analysis method determines elastic modulus (or storage modulus, E ′), viscous modulus (or loss modulus, E ″), and damping coefficient (tan Δ) as a function of temperature, frequency, or time...
Abstract
Dynamic mechanical analysis (DMA) is a powerful tool for studying the viscoelastic properties and behavior of a range of materials as a function of time, temperature, and frequency. This article describes various systems and equipment used in DMA setup and discusses the processes involved in preparation of test specimen for DMA measurements. Some factors to be considered when calibrating the DMA instrument are provided, along with a description on processes for interpreting the temperature and frequency dependence of DMA curves as well as the applications of DMA.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... on an applied stress for a viscoelastic solid may also be described by a mathematical expression, but because a time dependence is included, the relationship between stress and strain can generally be written as ( Ref 2 , 3 ): (Eq 2) σ ( t ) = f ( ε , t ) To simplify the use of Eq...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Book Chapter
Deformation and Viscoelasticity of Polymers
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... on a time-independent analysis will probably be adequate. As the temperature is increased, either by the environment or by heat given off during deformation, the time dependence of the mechanical response will increase. The characterization of such materials must consider viscoelasticity. In most...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Book Chapter
Modeling of Thermomechanical Phenomena in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005604
EISBN: 978-1-62708-174-0
... be displayed in a common chart. This is especially required for the eld pool geometry, temperature cycles, transient behavior of the distortions, and residual stresses. Details for each individual aspect are given in the following sections. Any time-dependent data should be given with adequate resolution...
Abstract
This article focuses on the necessary basics for thermomechanical fusion welding simulations and provides an overview of the specific aspects to be considered for a simulation project. These aspects include the required material properties, experimental data needed for validation of the simulation results, simplifications and assumptions as a prerequisite for modeling, and thermomechanical simulation. The article concludes with information on the sensitivity of the material properties data with respect to the simulation results. It also provides hints on the central challenge of having the right material properties at hand for a specific simulation task.
Book Chapter
Concepts of Fracture Control and Damage Tolerance Analysis
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002381
EISBN: 978-1-62708-193-1
..., an analysis based on K is sufficient. Fig. 3 Key parameters for fracture control. (a) Residual strength in terms of stress. (b) Crack growth and time period when inspection can be performed Using K , the residual strength, σ c , follows from: (Eq 1) σ c = K c / β π...
Abstract
Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design.
Book Chapter
Tribological Testing and Presentation of Data
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
... of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear...
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
..., but since the total strain is held constant, this can only be achieved if the elastic strain decreases with a corresponding decrease in the stress. Creep at a fixed total strain, therefore, results in a time dependent stress relaxation. A common practical example where stress relaxation is a major...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... of predicting crack initiation and propagation life. These operating temperatures are in the range where several time-dependent damage mechanisms can exist during the cyclic loading and during the dwell period and are therefore a design and operational concern. Stress relaxation occurs during cruise due...
Abstract
The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation kinetics, evolution of crack-tip stress fields due to creep, oxygen ingress, and change in the microstructure. It also provides a summary of creep-fatigue modeling approaches.
Book Chapter
Split-Hopkinson Pressure Bar Testing of Soft Materials
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003298
EISBN: 978-1-62708-176-4
... moderate strain level under constant, high-strain-rate loading. Some polymers exhibit no permanent plastic flow after substantial high rate straining, the strain recovery effect being time dependent. Stress-wave propagation through some polymers, such as polythene, is so dispersive that over...
Abstract
This article addresses the specialized aspects required to accurately quantify the behavior of soft materials, including polymers and polymeric composites, using the split-Hopkinson pressure bar (SHPB). It details some of the specialized SHPB techniques that facilitate testing soft materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft materials.
Book Chapter
Modeling of Residual Stress and Machining Distortion in Aerospace Components
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005537
EISBN: 978-1-62708-197-9
... superalloys. This step completes the transformation to the desired microstructure and properties, with the added benefit of stress relaxation through creep and recovery processes. The amount of stress relaxation depends on the time and temperature of the age cycle and the magnitude of the initial residual...
Abstract
Modeling will help reduce machining problems and thereby enable more rapid introduction of high-performance materials and components. This article discusses the technical needs of aircraft engine and airframe structural components and modeling of heat-treat-induced residual stress by finite-element residual-stress analysis. It describes the two-dimensional (2-D) and three-dimensional (3-D) procedures involved in finite-element residual-stress analysis. The article deals with the 2-D and 3-D machining distortion validation on engine-disk-type components. It describes methods for obtaining machining-induced residual stresses, including detailed finite-element analysis of the cutting process, the simple fast-acting mechanistic model, and the semi-empirical linear stress model. The article concludes with information on the modeling benefits and implementation of modeling in a production environment.
Book Chapter
Statistical Interpretation of Corrosion Test Results
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003641
EISBN: 978-1-62708-182-5
... realistic corrosion problems. Fig. 1 Time and environment dependency of databases and models. Source: Ref 2 In the development of laboratory corrosion tests for alloy evaluation, for example, it is necessary to determine the dominant corrosion factors. Preferred practice is to design a test...
Abstract
This article details factors that have been used for evaluating the susceptibility of alloys to stress-corrosion cracking. Many considerations impacting the validity and accuracy of information gathered from laboratory testing programs are reviewed. The article highlights the main characteristics of probability distributions, such as normal distribution, log-normal distribution, exponential distribution, Poisson distribution, and extreme-value distribution. It also provides information on the statistical concepts to produce effective test programs.
Book Chapter
Modeling of Hot Tearing and Other Defects in Casting Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
.... Because the grain size evolves with time, the grain size in the final cooled microstructure differs from the primary grain size, so grain size measurements for model validation should be inferred from analysis of the microsegregation pattern. Stress on the liquid films depends on the ability of liquid...
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
1