Skip Nav Destination
Close Modal
By
Qiming Zhang, Babak Kondori, Xing Qiu, Jeffery C.C. Lo, S.W. Ricky Lee
By
Harland G. Tompkins
By
Chaoran Dou, Daniel Elkins, Zhenyu (James) Kong, Chenang Liu
By
William Corbett
Search Results for
time domain reflectometry
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Search Results for time domain reflectometry
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 30 August 2021
Book Chapter
Failures in Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... for dye and pry is specified ( Ref 44 ). Figure 26 shows solder cracks identified by the dry-and-pry method. After forced separation on the incident region, the dyed area indicates the presence of preexisting cracks. Fig. 26 Solder crack after dye-and-pry processing Time Domain Reflectometry...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Book Chapter
Film Thickness Measurements Using Optical Techniques
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001295
EISBN: 978-1-62708-170-2
... Abstract Measuring the thickness of thin films can be accomplished in many ways. This article focuses on the optical method of single-wavelength ellipsometry, two multiple-wavelength methods of reflectometry and spectroscopic ellipsometry for measuring the thickness of thin films. The general...
Abstract
Measuring the thickness of thin films can be accomplished in many ways. This article focuses on the optical method of single-wavelength ellipsometry, two multiple-wavelength methods of reflectometry and spectroscopic ellipsometry for measuring the thickness of thin films. The general capabilities, principles and applications of ellipsometry and reflectometry are discussed in terms of nondestructive methods.
Book Chapter
Microwave- and Millimeter-Wave Inspection
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006475
EISBN: 978-1-62708-190-0
... ( Ref 10 ). An example pulsed time-domain spectroscopy system and a frequency-domain continuous-wave system are shown in Fig. 14 . Fig. 14 (a) The gantry of a terahertz system allows many flexible scan configurations, such as (b) pitch-catch reflection and (c) through-transmission modes...
Abstract
Electromagnetic signals at microwave and millimeter-wave frequencies are well suited for inspecting dielectric materials and composite structures in many critical applications. This article presents a partial list of reported nondestructive testing (NDT) application areas for microwaves. It discusses the advantages and limitations of inspection with microwaves. The article discusses the physical principles, including reflection and refraction, absorption and dispersion, scattering, and standing waves. It provides a discussion on terahertz (THz) imaging for nondestructive evaluation (NDE). The article concludes with information on ground-penetration radar (GPR) that uses electromagnetic radiation and detects the reflected signals from subsurface structures.
Book Chapter
Online Monitoring and Control of Polymer Additive Manufacturing Processes
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006968
EISBN: 978-1-62708-439-0
... sensors and processes. For example, when vibration sensors are mounted to online monitor FFF processes, the process-aware statistical features in the time domain can be extracted for process monitoring ( Ref 52 ). Similarly, another feasible strategy is converting the sensor signals to the frequency...
Abstract
Additive manufacturing (AM) is a revolutionary technology that fabricates parts layerwise and provides many advantages. This article discusses polymer AM processes such as material extrusion, vat photopolymerization (VPP), powder-bed fusion (PBF), binder jetting (BJ), material jetting (MJ), and sheet lamination (SL). It presents the benefits of online monitoring and process control for polymer AM. It also introduces the respective monitoring devices used, including the models and algorithms designed for polymer AM online monitoring and control.
Book Chapter
Qualification Testing for Coating System Selection
Available to PurchaseSeries: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006026
EISBN: 978-1-62708-172-6
... the database current as new coating systems come to market, the time associated with generating the performance data, and the risks of applying the same performance criteria for a coating that will be used in very different service environments—for example, on a structure in northern Minnesota and on another...
Abstract
Independent verification of coating system performance can be based on laboratory testing and/or field exposure. Qualification testing is a critical component to coating system selection. This article focuses on performance evaluations that are used to prequalify coating systems, namely, facility-specific, industry-specific, coating-type-specific, or a combination of these. It describes the standard laboratory tests used to generate performance data, namely, physical, compositional, chemical exposure, and application characteristics tests. The pros and cons of using manufacturer-generated data versus independently generated data are discussed. The article provides information on accelerated corrosion/weathering testing and nuclear level 1/level 2 service coatings qualification. It also describes the procedures for establishing minimum performance requirements and for determining when requalification testing may be required.