Skip Nav Destination
Close Modal
By
Gabriele Maria Fortunato, Amedeo Franco Bonatti, Simone Micalizzi, Irene Chiesa, Elisa Batoni ...
By
Caroline A. Murphy, Cesar R. Alcala-Orozco, Alessia Longoni, Tim B. F. Woodfield, Khoon S. Lim
Search Results for
three-dimensional bioprinting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37 Search Results for
three-dimensional bioprinting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... The bioprinting technique appears to have the potential to resolve the limitations of existing techniques, and it is gaining popularity as a quick and low-cost way to design and fabricate three-dimensional (3D) porous scaffolds with completely interconnected pore networks. The performance of 3D bioprinters...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
..., fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials. biomimetic scaffolds printability protein-based biopolymers three-dimensional bioprinting THE EXTRACELLULAR MATRIX (ECM) constitutes the material component of the native tissue...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Image
Published: 12 September 2022
Fig. 3 Three-dimensional bioprinted cardiac patches, (a) cross section, (b) anterior aspect, and (c) in vivo transplantation. Source: Ref 8 . Creative Commons License (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/
More
Image
Published: 12 September 2022
Fig. 4 Three-dimensional bioprinted organs, (a) human ear, and (b) sheep meniscus. Source: Ref 9 . Creative Commons License (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/
More
Image
Published: 12 September 2022
Fig. 8 Bioprinting application of three-dimensional direct inkjetting. (a) A piezoelectric inkjet printing system is employed to pattern different cells. (b) Schematic and (c) real-time appearance of the as-ejected droplets containing live cells. (d) High-speed cinematographic image of sinking
More
Image
Published: 12 September 2022
Fig. 1 A combined four-nozzle organ three-dimensional (3D) bioprinting technology. (a) Equipment of the combined four-nozzle organ 3D bioprinter; (b) working state of the combined four-nozzle organ 3D printer; (c) a computer-aided design model; (d) 3D construct containing a poly(lactic acid-co
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
... Abstract Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle...
Abstract
Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle, as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing, flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... three-dimensional bioprinting Additive Manufacturing Additive manufacturing (AM) is a newer technology that follows a layer-by-layer fabrication of predesigned components. Unlike subtractive processes in which the component is fabricated by removing material from a larger raw part, use of the AM...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Image
Published: 12 September 2022
Fig. 12 Three-dimensional inkjet-bioprinted architectures for soft tissue replacement. Tissue vascularization (blood vessel formation) in the soft tissue engineered hydrogel constructs after 8 weeks of implantation in athymic mice is prominently observed in (a) the bovine endothelial cell (bEC
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... Abstract Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
.... A scaffold is a three-dimensional (3D) structure capable of supporting cell adhesion, maturation, and proliferation, allowing the regeneration in vitro of functional tissues and organs, especially for regenerative medicine applications, among others ( Ref 1 ). Bioprinting allows the controlled, layer...
Abstract
Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional bioprinting approaches. This article discusses the main approaches and technologies for in situ bioprinting. It provides a brief overview of the bioprinting pipeline, highlighting possible solutions to improve currently used approaches. Additionally, case studies of in situ bioprinting are provided and in situ bioprinting future perspectives are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... advanced printing techniques for alginate/gelatin-based bioinks. alginate gelatin bioinks three-dimensional bioprinting ALGINATE (also referred to as sodium salt of alginic acid) is a natural polymer derived from brown algae ( Ref 1 ). It is a polysaccharide consisting of β-D-mannuronic acid...
Abstract
This article discusses alginate/gelatin-based bioinks in 3D bioprinting applications, providing a summary of the most relevant previous work in the field. It presents advanced compositions to enhance functionality and/or optimize hydrogels for 3D bioprinting. The article discusses advanced printing techniques for alginate/gelatin-based bioinks.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... analysis high-throughput drug screening inkjet printing laser-assisted jetting microvalve jetting RNA analysis tissue engineering THREE-DIMENSIONAL (3D) PRINTING, which is the popular name for additive manufacturing, comprises a group of technologies. It has been developed over the past 30 years...
Abstract
Microvalve jetting, with its advantages of low cost, ease of operation, high printing speed, and ability to process living cells with high viability, has been primarily used for fabricating high-throughput drug-screening models, in vitro cellular structures for fundamental cell biology research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser-assisted jetting. The parameters covered include nozzle size (nozzle inner diameter), pneumatic pressure, valve-opening time, and printing speed of microvalve jetting. Subsequently, the article discusses biomaterials for microvalve jetting in terms of biomaterial definition, required properties for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering.
Image
in In Situ Bioprinting—Current Applications and Future Challenges
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 7 In situ bioprinting of cartilage and osteochondral (OC) tissue, (a) three-dimensional (3D) scanning system used by the authors to obtain the 3D model of the defect; (b) 3D bioprinter used to perform the material deposition; (c) 3D digital model of femoral condyle (orange) assembled
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006904
EISBN: 978-1-62708-392-8
... during the process of bioprinting can result in substantial adverse effects to cells when otherwise biocompatible materials are used in high concentrations. Thus, the unique requirement of bioinks to be amenable to three-dimensional (3D) printing and delivery of living cells represents a significant...
Abstract
The field of bioprinting is a subset of additive manufacturing (AM) that is rapidly expanding to meet the needs of regenerative medicine and tissue engineering. Bioprinting encompasses a broad spectrum of issues, from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. This article focuses on two challenges regarding bioprinting: bioinks and crosslinking. It describes the methods for characterizing the performance of bioink formulations and the effectiveness of crosslinking strategies. The topics covered include modalities of bioprinting, characteristics of bioink, rheological properties of bioink sols, rheological measurements, mathematical models of bioink rheology, postfabrication polymer network mechanics, mechanical properties of crosslinked bioinks, and printability of bioinks. Finally, specific strategies used for crosslinking bioinks, as well as some emerging strategies to further improve bioinks and their crosslinking, are summarized.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Image
Published: 12 September 2022
Fig. 23 (a–e) Application of preset extrusion bioprinting for various cross-sectional tissue structures (spinal cord, hepatic lobule, capillaries, and blood vessel) and the letter “S.” Three-dimensional (3D) computer-aided design modeling of cross-sectional tissue structures and photography
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
..., and the regulatory challenges of vat polymerization-based bioprinting are presented. bioprinting medical applications vat polymerization ADDITIVE MANUFACTURING (or three-dimensional, or 3D, printing) as a process has attracted people’s attention from all over the world in recent years ( Ref 1 – 4...
Abstract
Of the seven additive manufacturing (AM) processes, this article focuses on the vat photopolymerization, or simply vat polymerization, process, while briefly discussing the other six AM processes. Vat polymerization and its characteristics, AM applications in medical fields, and the regulatory challenges of vat polymerization-based bioprinting are presented.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
... To study biomaterial and laser deposition effects on cellular behavior 43 Human embryonic stem-cell-derived limbal epithelial stem cell To investigate the feasibility of bioprinting three-dimensional (3D) layered corneal-like tissues 44 Human adipose-tissue-derived stem cell To print 3D grid...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
...://creativecommons.org/licenses/by/4.0/ Fig. 5 Corresponding reconstructions of the CT scans via stereolithography three-dimensional printing, which can be used for teaching purposes. Source: Ref 61. Creative Commons License (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/ Bioprinting...
Abstract
Vat polymerization is a form of three-dimensional (3D) printing. Historically, it is the oldest additive manufacturing technique, with the development of stereolithography apparatus (SLA) by Charles Hull in 1986. This article outlines the various forms of vat polymerization techniques used for biomedical applications. Due to the complex nature of this printing process, many key print parameters and material properties need to be considered to ensure a successful print. These influential parameters are addressed throughout the article to inform the reader of the considerations that should be taken when using the vat polymerization technique. The article provides information on vat polymerization printer setup, the photo-cross-linking mechanism, and considerations using vat polymerization. In addition, it outlines and discusses the advancements of vat polymerization in the biomedical industry.
1