Skip Nav Destination
Close Modal
By
ASM Committee on Threaded Steel Fasteners , Frank W. Akstens, James Gialamas, Edward J. Bueche, T.P. Madvad ...
Search Results for
thread quality
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 418 Search Results for
thread quality
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002143
EISBN: 978-1-62708-188-7
... factors that influence thread quality, production rate, and cost in die threading are composition and hardness of work metal; accuracy and finish; thread size; obstacles, such as shoulders or steps; speed; lead control; and cutting fluid. The article examines these factors and describes the tools...
Abstract
This article discusses the types and operations of the most common machines used for die threading. The construction, types, and comparison of solid and self-opening dies are discussed. The article explains the modification of chasers for threading Monel shaft. The principal factors that influence thread quality, production rate, and cost in die threading are composition and hardness of work metal; accuracy and finish; thread size; obstacles, such as shoulders or steps; speed; lead control; and cutting fluid. The article examines these factors and describes the tools and cutting fluids used for pipe threading along with the severity of stop lines.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002139
EISBN: 978-1-62708-188-7
... the pitch of the tapped thread. Lead screws convert rotary motion into linear motion so that the axial motion of the tap into the hole conforms with the desired pitch of the thread. Lead-screw control is often used in high-volume applications or with larger tap sizes to ensure quality threads. A typical...
Abstract
Tapping is a machining process for producing internal threads. This article provides a discussion on machines and accessories of tapping. It reviews the seven categories of taps, namely, solid, shell, sectional, expansion, inserted-chaser, adjustable, and collapsible taps, as well as their design and functions. It explains the influences of various factors on the selection of tap design features and discusses the principal factors that influence the selection of equipment and procedure for tapping. The article reviews the factors that determine torque demand. It also provides an overview of tap materials and surface treatment and concludes with a discussion on tapping of taper pipe threads.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... cycle if there were no compensating lead on the die. Axial movement does not affect thread quality, but it may restrict the ability to produce a full thread close to a shoulder and will reduce the amount of full thread that can be produced with a special die face. The effective lead angle varies...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002142
EISBN: 978-1-62708-188-7
... movement does not affect thread quality, but it may restrict the ability to produce a full thread close to a shoulder and will reduce the amount of full thread that can be produced with a special die face. The effective lead angle varies slightly during die penetration so that some axial movement does...
Abstract
This article discusses the three characteristics that are important in evaluating and selecting metals for thread rolling, namely, rollability, flaking, and seaming. It reviews the capabilities and limitations of flat-die rolling, radial-infeed rolling, tangential rolling, through-feed rolling, planetary thread rolling, continuous rolling, and internal thread rolling, as well as the rolling machines and dies used. The article describes the factors affecting die life and provides information on radial die load, seam formation, surface finish, and thread dimensions that are affected by the form of the thread. It explains the reasons for using fluids in thread rolling. The article concludes with a comparison of rolling with cutting and grinding.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... 2 ). Failures of threaded and blind fasteners and of fastened sheet covered by this identification code are illustrated in Fig. 1 . Fig. 1 Types of failures in threaded and blind fasteners and in fastened sheet. Source: Ref 3 Fastener Quality and Counterfeit Fasteners...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002140
EISBN: 978-1-62708-188-7
... of a part, and internal and external threads can be cut at the same time. Numerical Control (NC) Machines Numerical control (NC) machines are also used for thread milling, together with other operations, in a single fixturing. Long cutter life and high-quality threads are among the advantages...
Abstract
Thread milling is a method of cutting screw threads with a milling cutter in a thread mill. This article discusses the operational procedures of thread milling machines, namely, universal thread mills, production thread mills, planetary thread mills, and numerical control machines. It describes the classification of thread milling cutters, such as single-form cutters and multiple-form cutters. The article reviews the speeds and feeds for thread milling, which depend on a number of variables, such as the material being milled, tool material, and rigidity of the machine and workpiece. It tabulates the cutting speeds for climb and conventional milling.
Image
Published: 01 January 1989
or regrind. The tap used maintained thread size, quality, and concentricity with outside diameter within 0.075 mm (0.003 in.), as specified, throughout the entire production run.
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... out by one of the several methods of thread rolling. Thread grinding is applied only when the advantages of the ground threads exceed the disadvantages of the generally higher cost of equipment or when, for technological reasons, the production or quality requirements cannot be met by the generally...
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002187
EISBN: 978-1-62708-188-7
...Abstract Abstract This article discusses various machining techniques of zinc alloy die castings. These include turning, boring, drilling, reaming, tapping, die threading, milling, and sawing. In addition, the article describes the factors that influence machinability of the zinc alloy die...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001360
EISBN: 978-1-62708-173-3
... are also required to be physically tested. In the case of unthreaded studs, the quality inspection test can be to bend 15°. The studs can be straightened after testing, if required. Threaded studs can be subjected to a torque test to approximately 80% of the yield torque load, rather than a bend test...
Abstract
Stud arc welding (SW), also known as arc stud welding, is a commonly used method for joining a metal stud, or fastener, to a metal workpiece. This article serves as a basic information source for those interested in accomplishing one-sided, no-hole attachment of metal fasteners. It schematically illustrates the basic equipment used for stud arc welding and describes the operation of the welding process. The article discusses several specific applications that lend themselves to special variations of the stud arc welding technique. It concludes with information on quality control, qualification, and inspection of stud-welding.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005555
EISBN: 978-1-62708-174-0
...), one additional stud per hundred welded should be tested to verify weld quality. Below 10 °C (50 °F), welded studs should be tested using the bending tool, rather than by hammer testing. In colder welding temperature conditions, threaded studs should always be tested by torque, rather than by bending...
Abstract
This article serves as a basic information source for those interested in accomplishing one-sided, no-hole attachment of metal fasteners. The stud arc-welding process is a substitute for fastening procedures such as drilling and tapping, bolting, and self-tapping screws. The article describes the operating principle of, and the tooling and equipment used for, the welding process. It contains tables that present information on the mechanical properties of aluminum, stainless steel, and low-carbon steel stud arc welded fasteners. The article details the different tests conducted to ensure the quality of stud arc-welded fasteners. It concludes with information on safety precautions to be followed in the welding process.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003323
EISBN: 978-1-62708-176-4
..., friction coefficient testing, torque tension testing, locknut testing, and angular ductility and rotational capacity tests. The article reviews the basic methods and fundamental principles for mechanical testing of externally and internally threaded fasteners and bolted joints. The test methods...
Abstract
This article provides an overview of the relationships between torque, angle-of-turn, tension, and friction and explains how they are measured and evaluated. It focuses on the principle, test equipment, procedure, evaluation, and test report of various testing methods, namely, friction coefficient testing, torque tension testing, locknut testing, and angular ductility and rotational capacity tests. The article reviews the basic methods and fundamental principles for mechanical testing of externally and internally threaded fasteners and bolted joints. The test methods for externally threaded fasteners include product hardness, proof load, axial and wedge tension testing of full-sized products, tension testing of machined test specimens, and total extension at fracture testing. Product hardness, proof load, and cone proof-load test are the test methods for internally threaded fasteners. The article concludes with a description of torque-angle signature analysis and the specification of measurement accuracy for torque and clamp force.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006501
EISBN: 978-1-62708-207-5
... of the various methods and summarizes the advantages and disadvantages of each. The article also discusses the use of staples, nails, rivets, and threaded fasteners and provides relevant property and performance data. aluminum assemblies clinching crimping dimpling interference fits mechanical joining...
Abstract
This article compares and contrasts mechanical joining techniques used in the manufacture of aluminum assemblies, including seaming, swaging, flanging, crimping, clinching, dimpling, interference and snap fits, and interlocking joints. It provides basic illustrations of the various methods and summarizes the advantages and disadvantages of each. The article also discusses the use of staples, nails, rivets, and threaded fasteners and provides relevant property and performance data.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001018
EISBN: 978-1-62708-161-0
...Abstract Abstract This article discusses the properties of threaded fasteners made from carbon and low-alloy steels containing a maximum of 0.55% carbon. It provides guidelines for the selection of steels for bolts, studs, and nuts intended for use at temperatures between -50 and 370 deg C...
Abstract
This article discusses the properties of threaded fasteners made from carbon and low-alloy steels containing a maximum of 0.55% carbon. It provides guidelines for the selection of steels for bolts, studs, and nuts intended for use at temperatures between -50 and 370 deg C. The article also discusses steels rated for service above 370 deg C and describes internationally recognized grade designations. The specifications provided can be used to outline fastener requirements, control manufacturing processes, and establish functional or performance standards. The most commonly used protective metal coatings for ferrous metal fasteners; zinc, cadmium, and aluminum; are described as well.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
...; or for hot forging. The article explains these operations, along with the several recognized quality and commodity classifications applicable to steel wire rods. The heat treatments commonly applied to steel wire rod, either before or during processing into wire, include annealing, spheroidize annealing...
Abstract
Wire rod is a semifinished product rolled from billet on a rod mill and is used primarily for the manufacture of wire. Steel wire rod is usually cold drawn into wire suitable for further drawing; for cold rolling, cold heading, cold upsetting, cold extrusion, or cold forging; or for hot forging. The article explains these operations, along with the several recognized quality and commodity classifications applicable to steel wire rods. The heat treatments commonly applied to steel wire rod, either before or during processing into wire, include annealing, spheroidize annealing, patenting, and controlled cooling. When the end product must be heat treated, the heat treatment and mechanical properties should be clearly defined. Carbon steel rods are produced in various grades or compositions: low-carbon, medium-low-carbon, medium-high-carbon, and high-carbon steel wire rods. Rod for the manufacture of carbon steel wire is produced with manufacturing controls and inspection procedures intended to ensure the degree of soundness and freedom from injurious surface imperfections necessary for specific applications. This article also describes the various quality descriptors applicable to the rods as well as standard qualities and commodities available in alloy steel wire rod.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005629
EISBN: 978-1-62708-174-0
..., often referred to as a pin tool to differentiate it from other tooling associated with the process. The pin tool used in FSW influences virtually every aspect of the process. Pin tool design affects the process loads, material flow, process-zone temperature, and weld quality. Tool design also has...
Abstract
A key differentiator between friction stir welding (FSW) and other friction welding processes is the presence of a nonconsumable tool in FSW, often referred to as a pin tool to differentiate it from other tooling associated with the process. This article discusses materials for friction stir welding (FSW) pin tools, various tool geometries that have been used, designs for specific applications, predicting and measuring tool performance, and other considerations in FSW pin tool design. The tool materials include tool steels, superalloys, refractory metals, carbides and ceramics, and superabrasives.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005576
EISBN: 978-1-62708-174-0
... Tool Data Fixture Data Welding Tool ID Fixture ID Tool Type Clamp Spacing Shoulder Diameter in Clamp Pressure psi Shoulder Configuration Pin Configuration Joint Preparation Thread Pitch th/in Pin Diameter in Axial control mode Pin Length...
Abstract
This article discusses the development of a welding procedure for friction stir welding (FSW), including the process of defining a preliminary procedure, the optimization of parameters, the development of supporting data, and other key features to ensure a successful procedure. The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound friction stir welds in various aluminum alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002395
EISBN: 978-1-62708-193-1
... of fracture mechanics, traditional toughness tests such as the CVN were widely used to characterize steels and establish guidelines for their fitness for service. Many of these approaches are still widely used today. In fact, today the CVN test is the most widely used quality control test for evaluating steel...
Abstract
This article provides information on fracture toughness and fatigue crack growth of structural steels. It describes fatigue life behavior in terms of unnotched fatigue limits, notch effects, axial strain-life fatigue, and mean stress effects. The article analyzes the mechanisms of corrosion fatigue crack initiation and prevention of corrosion fatigue. It presents case histories of fatigue failure of various steel components. The article reviews the failure of coiled tubing in a drilling application and the failure of coiled tubing due to hydrogen sulfide exposure, with examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
... castings. Normally, to obtain a high-quality bright chromium finish on castings, they must be buffed and polished before plating. However, a combination of modern zinc die casting and plating techniques substantially reduces or, in some cases, eliminates the need for mechanical polishing. If a finish...
Abstract
Die casting is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper, and iron. The article illustrates a characteristic five-layer microstructure of zinc alloy casings. It discusses the various methods of finishing of zinc alloy die castings, including chromium plating, polishing, painting, and electropainting. The article describes the casting of inserts and their uses in the zinc. It concludes with information on the applications of zinc die castings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... in the assembly were overstressed. The bolts failed because of poor hardenability relative to their diameter. The material for the U-bolts was commercial quality cold-finished 1045 steel bar 29 mm (1 1 8 in.) in diameter. The bar stock was cut to length, threads were cut on both ends...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.