Skip Nav Destination
Close Modal
Search Results for
thread grinding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 337 Search Results for
thread grinding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... Abstract This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article...
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Image
Published: 01 January 1989
Image
Published: 01 January 1989
Fig. 5 Schematic of a three-rib thread grinding wheel. A, roughing rib; B, intermediate rib; C, finishing rib. The flattened area (D) is optional and can be used to finish grind the crest of the thread.
More
Image
Published: 01 January 1989
Fig. 9 Principle of centerless thread grinding. This method is used to produce headless setscrews. The blanks are hopperfed to position A. The regulating wheel causes them to traverse the grinding wheel face, from which they emerge at position B in completed form. A production rate of 60 to 70
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002181
EISBN: 978-1-62708-188-7
... based on steel classification and the effects of steel composition and hardness on grindability. It reviews the types of grinding, namely, surface grinding, cylindrical grinding, centerless grinding, internal grinding, thread grinding, flute grinding, and low-stress grinding. Grinding of types-A, D, F...
Abstract
This article describes the selection of tool steels on the basis of specific product applications. It contains tables that list nominal speeds and feeds for the machining of various tool steels. The machining processes include turning, boring, broaching, drilling, reaming, tapping, milling, and sawing. The article explains the machining of the following tool steels: water hardening; types A, D and O cold-work; hot work; high speed, low-alloy special-purpose; and low-carbon mold. It details the machining of tool steel gears. The article also discusses the grinding of tool steels based on steel classification and the effects of steel composition and hardness on grindability. It reviews the types of grinding, namely, surface grinding, cylindrical grinding, centerless grinding, internal grinding, thread grinding, flute grinding, and low-stress grinding. Grinding of types-A, D, F, L, O, P, S and W steels, hot-work steels, and high speed steels, is also detailed.
Image
Published: 01 January 1989
Fig. 10 Stock tap modified by grinding away trailing edge of thread to optimize the threading of titanium. It is essential to use taps with interrupted threads and with alternate teeth removed. The greatest chip clearance is obtained by grinding a large chamfer on the trailing edge of the tap.
More
Image
Published: 01 January 1989
Fig. 23 Thread rolling dies (foreground) produced by surface grinding methods using the abrasive grinding wheel shown in background
More
Image
Published: 01 January 1989
details Speed 2260 rev/min (59 m/min, or 192 sfm) Feed 0.025 mm/rev (0.001 in./rev) Cutting fluid Thread-grinding oil (a) Production rate, pieces/h 65 (a) One part heavy thread-grinding oil (75% fat, 15% sulfur) mixed with four parts mineral oil having a viscosity of 100 SUS
More
Image
Published: 01 December 1998
with a chucking machine. (f) Centerless grinding. (g) Inside diameter form grinding. (h) Jig grinding. (i) Double-disk grinding. (j) Thread grinding. (k) Outside-diameter form grinding. (l) Slot grinding
More
Image
Published: 01 January 1989
results from a large number of tangent-line travels in consecutive positions. The profile in (b) is generated by using three truing heads, each holding a diamond and moving in the paths shown, to dress the wheel for fine (left) and coarse (right) thread grinding.
More
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... thread rolling and grinding. continuous rolling cutting cylindrical dies die life flaking flat-die rolling grinding internal thread rolling planetary thread rolling radial-infeed rolling rollability seaming tangential rolling thread rolling through-feed rolling warm rolling...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002142
EISBN: 978-1-62708-188-7
... by the form of the thread. It explains the reasons for using fluids in thread rolling. The article concludes with a comparison of rolling with cutting and grinding. continuous rolling flaking flat die rolling internal thread rolling planetary thread rolling radial-infeed rolling seam formation...
Abstract
This article discusses the three characteristics that are important in evaluating and selecting metals for thread rolling, namely, rollability, flaking, and seaming. It reviews the capabilities and limitations of flat-die rolling, radial-infeed rolling, tangential rolling, through-feed rolling, planetary thread rolling, continuous rolling, and internal thread rolling, as well as the rolling machines and dies used. The article describes the factors affecting die life and provides information on radial die load, seam formation, surface finish, and thread dimensions that are affected by the form of the thread. It explains the reasons for using fluids in thread rolling. The article concludes with a comparison of rolling with cutting and grinding.
Image
Published: 01 January 1989
Fig. 4 Cylindrical grinding of threads using (a) single-rib, (b) multirib traverse, (c) multirib plunge, and (d) skip-rib multiribbed grinding wheels
More
Image
Published: 01 January 1989
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
.... The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes...
Abstract
Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics. The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes nontraditional machining methods that are suitable for shaping high-temperature, high-strength nickel alloys. These include electrochemical machining, electron beam machining, and laser beam machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002179
EISBN: 978-1-62708-188-7
... traditional machining operations, such as turning, drilling, milling, shaping, thread cutting, and grinding, to the microstructure of standard steel grades. It also explains the technologies in non-traditional machining processes, such as abrasive waterjet cutting, electrical chemical grinding, and laser...
Abstract
This article describes the influence of steel chemical compositions and microstructure on machining processes. It discusses the various microstructural phases of standard carbon and alloy steels, which influence machinability. The article reviews the expected response of several traditional machining operations, such as turning, drilling, milling, shaping, thread cutting, and grinding, to the microstructure of standard steel grades. It also explains the technologies in non-traditional machining processes, such as abrasive waterjet cutting, electrical chemical grinding, and laser drilling.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002193
EISBN: 978-1-62708-188-7
... Abstract Powder metallurgy is a near-net shape process capable of producing complex parts with little or no need for secondary operations such as machining, joining, or assembly. However, the inability to produce certain geometrical figures such as transverse holes, undercuts, and threads...
Abstract
Powder metallurgy is a near-net shape process capable of producing complex parts with little or no need for secondary operations such as machining, joining, or assembly. However, the inability to produce certain geometrical figures such as transverse holes, undercuts, and threads frequently necessitates some machining, particularly drilling. This article provides a discussion on the measures that can optimize the machining of P/M materials. It reviews the factors influencing machinability of P/M components, including workpiece and tool material properties, cutting conditions, machine and cutting tool parameters as well as some P/M material and production process parameters. These parameters discussed include the particle size, part geometry, porosity, compaction and sintering methods. In addition, the article presents guidelines for the various machining processes, namely, turning and boring, milling, drilling, grinding, reaming, burnishing, tapping, and honing and lapping.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002183
EISBN: 978-1-62708-188-7
... and spotfacing, tapping and thread milling, milling, sawing, and grinding are discussed. Nominal compositions of wrought heat-resistant alloys and nickel-base heat-resistant casting alloys, as well as compositions of cobalt-base heat-resistant casting, iron-base heat-resistant casting, and mechanically alloyed...
Abstract
This article provides a discussion on cutting tools, their materials and design; cutting fluids; and various aspects of machining operations of heat-resistant alloys, with several examples. Operations such as turning, planing and shaping, broaching, drilling, reaming, counterboring and spotfacing, tapping and thread milling, milling, sawing, and grinding are discussed. Nominal compositions of wrought heat-resistant alloys and nickel-base heat-resistant casting alloys, as well as compositions of cobalt-base heat-resistant casting, iron-base heat-resistant casting, and mechanically alloyed (oxide dispersion strengthened) products are also listed.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002185
EISBN: 978-1-62708-188-7
... hacksawing, grinding, and honing. circular sawing copper copper alloys drilling grinding honing machinability machining metal cutting fluids milling planing power band sawing power hacksawing reaming slitting tapping threading turning COPPER and copper alloys can be divided...
Abstract
This article begins with a discussion on machinability ratings of copper and copper alloys and then describes the factors influencing the machinability ratings. It explains the effect of alloying elements, cold working, and cutting fluid on the machinability of copper and copper alloys. In addition, the article provides a comprehensive discussion on various machining techniques that are employed for machining of copper and copper alloys: turning, planing, drilling, reaming, tapping and threading, multiple operation machining, milling, slitting and circular sawing, power band sawing and power hacksawing, grinding, and honing.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002143
EISBN: 978-1-62708-188-7
...-thread metals harder than HRC 36 usually causes excessive wear or breakage of tools. Single-point threading or thread grinding is recommended for metals harder than HRC 36. Size of workpiece seldom limits application of the process. Die threading has been used to cut 11 threads per millimeter (280...
Abstract
This article discusses the types and operations of the most common machines used for die threading. The construction, types, and comparison of solid and self-opening dies are discussed. The article explains the modification of chasers for threading Monel shaft. The principal factors that influence thread quality, production rate, and cost in die threading are composition and hardness of work metal; accuracy and finish; thread size; obstacles, such as shoulders or steps; speed; lead control; and cutting fluid. The article examines these factors and describes the tools and cutting fluids used for pipe threading along with the severity of stop lines.
1