Skip Nav Destination
Close Modal
Search Results for
thin-wall permanent mold casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 297
Search Results for thin-wall permanent mold casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006513
EISBN: 978-1-62708-207-5
... reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings. cast aluminum alloys casting...
Abstract
Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009021
EISBN: 978-1-62708-187-0
... steel sand castings, thin-wall aluminum and magnesium castings, thin-wall permanent mold castings, and thin-wall investment castings, with schematic illustrations. thin-wall investment casting thin-wall permanent mold casting thin-wall steel sand casting thin-wall aluminum casting magnesium...
Abstract
Thin sections save weight and thus contribute to a more favorable strength-to-weight ratio. By requiring a smaller volume of metal, thin walls may also lower casting costs, particularly when an expensive alloy is being poured. This article discusses the design problems in thin-wall steel sand castings, thin-wall aluminum and magnesium castings, thin-wall permanent mold castings, and thin-wall investment castings, with schematic illustrations.
Image
Published: 01 December 2008
Fig. 9 In this permanent mold casting, functioning of heavier ribs with thin walls induced hot tears and shrinkage at the junctions. Uniformity of wall thickness would have eliminated these defects.
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005299
EISBN: 978-1-62708-187-0
... explains the sand casting and permanent mold casting of steel. The process design and casting of thin sections are also discussed. thin-wall steel castings castability graphite molds induction melting permanent mold castings sand mold castings steels solidification characteristics melting...
Abstract
Sand mold and permanent mold casting are the major methods for shape casting of steels, with production closely split among green sand, chemically bonded sand, and permanent mold processes. This article describes key aspects of the steel casting process, including steel solidification characteristics, melting practices, melt treatment, and feeding of the molten steel into the mold used in steel foundries. It discusses the features of melting furnaces used in direct arc melting and induction melting. It reviews factors such as wall thickness and designing for avoidance of hot spots. The article explains the sand casting and permanent mold casting of steel. The process design and casting of thin sections are also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005260
EISBN: 978-1-62708-187-0
... Manually operated permanent molds for low production may consist of a simple book-type mold arrangement ( Fig. 2 ). For castings with high ribs or walls that require mold retraction without rotation, the manually operated device shown in Fig. 2 can be used. With either type of device, the mold halves...
Abstract
This article provides information on metals that can be cast in permanent molds. It describes the advantages, disadvantages, applications, and design of permanent castings. Following a discussion on the factors considered in mold design and material selection, the article details the application of mold coatings and examines the effects of major processing variables on mold life. The variables that determine mold temperature and measures for controlling it are reviewed, and the effects of short-term and long-term variables on the dimensional accuracy of permanent mold castings are explained. The article concludes with a discussion on the factors influencing the surface finish on permanent mold castings.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009022
EISBN: 978-1-62708-187-0
... was made to good quality. The design of this casting could have been improved by increasing the thickness of the inner wall to equal that of the heavier adjoining ribs. This uniformity of wall thickness would have eliminated the shrinkage defects. Fig. 9 In this permanent mold casting, functioning...
Abstract
In many castings, functional requirements dictate that walls be uniform or nearly uniform in thickness. Many problems in producing castings having walls of uniform thickness are associated with the premature freezing of molten metal before all parts of the mold cavity have been filled. This article discusses the design problems and solutions of various castings, such as sand, shell mold, permanent mold, and investment castings, with illustrations.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009023
EISBN: 978-1-62708-187-0
..., increasing the wall thickness and thereby adding unwanted weight was mandatory in order to produce acceptable castings. Permanent Mold Castings Permanent mold castings require flow and feed paths similar to those required by sand castings. The example shown in Fig. 10 was produced in a simple two...
Abstract
This article addresses the problems of designing isolated heavy sections that are functionally essential. It describes the two most efficient solutions to these problems over which the designer has control: providing flow and feed paths and reducing the mass of the isolated sections. The article concludes with a discussion on designs that reduce the mass of a remote section.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009019
EISBN: 978-1-62708-187-0
... shapes of the cored sections permit easy removal of core sand after the casting has cooled. Fig. 10 Well-proportioned cored passages. Sand core was able to withstand normal foundry handling, provided stable positioning in the mold, and was easily vented. Thin-Wall Casting Sections Formed...
Abstract
Cores are separate shapes, of sand, metal, or plaster, that are placed in the mold to provide castings with contours, cavities, and passages. Cored holes should be designed simply as the intended function of the casting permits. This article describes the designing of casting for the use of sand cores and to eliminate cores, with illustrations. It provides general rules for designing cored holes in investment castings. The article discusses the general principles of coremaking with illustrations. It concludes with a comparison between coring and drilling.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005259
EISBN: 978-1-62708-187-0
... and permanent molds and their production considerations. It describes the speed of rotation, mold speeds curves, and pouring techniques that are considered in the operation of vertical centrifugal casting machines. vertical centrifugal casting machines sand molds vertical centrifugal casting mold...
Abstract
Vertical centrifugal casting machines, installed below the ground level for maximum operator safety, are used for producing bushings and castings that are relatively large in diameter and short in length. This article discusses the mold design for different types of sand molds and permanent molds and their production considerations. It describes the speed of rotation, mold speeds curves, and pouring techniques that are considered in the operation of vertical centrifugal casting machines.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... of shrinkage tendencies Casting design considerations: draft, wall thickness, internal passages. (For example, parts with undercuts and complex internal passageways can usually be made by sand, plaster, or investment casting but may be impractical or impossible to produce in permanent mold or pressure die...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006588
EISBN: 978-1-62708-210-5
... Abstract Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics...
Abstract
Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009025
EISBN: 978-1-62708-187-0
...% of the castings at the junctions of the thin wall with the heavier flanges; the thin wall froze and contracted in advance of the heavy tapping bosses and the flanges. Fig. 10 Mold restraint coupled with nonuniform freezing of the various sections of this aluminum (alloy 356) semipermanent mold casting...
Abstract
This article discusses distortion due to differences in solidification times and its two solutions. The solutions include compensating the distortion in a pattern in the direction opposite to that of the observed distortion and increasing the section thickness of an end member and subsequently machining the section to the desired size. The distortion due to mold restraint and its elimination by redesigning or by adding tie bars are described. The article reviews the distortion that occurs in heat treating and its solution. It concludes with a discussion on the influence of alloy to be cast on distortion.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... Abstract This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006590
EISBN: 978-1-62708-210-5
... effects on physical and mechanical properties, and application characteristics of these alloys. Permanent-mold aluminum casting rotating-beam fatigue curves for 850.0-T101, 850.0-T5, and 852.0-T5 alloys are also presented. aluminum alloy 850.0 aluminum alloy 851.0 aluminum alloy 852.0 aluminum...
Abstract
The aluminum-tin alloys 850.0, 851.0, 852.0, and 853.0 are specialized compositions displaying excellent bearing characteristics under moderate loads and with effective lubrication. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of these alloys. Permanent-mold aluminum casting rotating-beam fatigue curves for 850.0-T101, 850.0-T5, and 852.0-T5 alloys are also presented.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006326
EISBN: 978-1-62708-179-5
... that mold filling is also relatively easy in thin sections ( Ref 8 , 9 ). It is normally recommended not to design ductile iron castings thinner than 4 to 5 mm (0.16 to 0.20 in.) in predominant wall thickness ( Ref 1 , 4 ). However, due to competition from light metal alloys, the interest in thin wall...
Abstract
This article discusses some of the factors that are linked directly to the casting design of ductile iron castings. It reviews the choice of molding process, application of draft, and patternmaker's allowance that should be taken into consideration in designing castings. The article describes the solidification shrinkage associated with the volume change that occurs during solidification, as well as strength and stiffness of ductile iron castings. It concludes with a discussion on the thermal deformation and residual stress in ductile iron castings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... weigh less than 10 kg (20 lb), but castings weighing up to 25 kg (50 lb), and sometimes even up to 100 kg (200 lb), are not uncommon. Permanent mold castings have smoother surfaces than those of sand castings and exhibit superior pressure tightness. Tapered metal cores are used to form straight-wall...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005244
EISBN: 978-1-62708-187-0
..., and additives used in coremaking. It discusses the curing of compacted cores by core baking and the hot box processes. The article provides an overview of the core coatings, assembling and core setting, coring of tortuous passages, and cores in permanent mold castings and investment castings. It also discusses...
Abstract
Cores are separate shapes of sand that are placed in the mold to provide castings with contours, cavities, and passages that are not otherwise practical or physically obtainable by the mold. This article describes the basic principles of coremaking and the types of core sands, binders, and additives used in coremaking. It discusses the curing of compacted cores by core baking and the hot box processes. The article provides an overview of the core coatings, assembling and core setting, coring of tortuous passages, and cores in permanent mold castings and investment castings. It also discusses the design considerations in coremaking to eliminate cores and compares coring with drilling.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
..., for conventional sand and gravity die (permanent mold) casting, the requirement effectively dictates bottom-gating into the mold cavity and excludes any other form of gating at any other height. Also excluded are any filling methods that cause waterfall effects in the mold cavity. Avoiding waterfalls dictates...
Abstract
This article provides a discussion on ten rules for the effective production of reliable castings. These rules include good-quality melt, liquid front damage, liquid front stop, bubble damage, core blows, shrinkage damage, convection damage, segregation, residual stress, and location points.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... alloys and hypereutectic gray iron. Permanent mold casting is particularly suitable for the high-volume production of castings with fairly uniform wall thickness and limited undercuts or intricate internal coring. The process can also be used to produce complex castings, but production quantities should...
Abstract
This article provides a general introduction on casting processes and design techniques. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005258
EISBN: 978-1-62708-187-0
... horizontal roller-type machine double-face plate machine pouring HORIZONTAL CENTRIFUGAL CASTING is used to cast parts having an axis of revolution. The technique uses the centrifugal force generated by a rotating cylindrical mold to force the molten metal against the mold wall to form the desired...
Abstract
Horizontal centrifugal casting is used to cast parts having an axis of revolution. This article discusses the operations of three types of horizontal casting machine: the flanged shaft machine, the horizontal roller-type machine, and the double-face plate machine. It provides information on expendable and permanent molds used for centrifugal casting. The parameters and operations of the horizontal centrifugal casting process, including pouring and solidification, as well as the applications are described.
1