1-20 of 66 Search Results for

thermoplastic-matrix composites

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
... the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003023
EISBN: 978-1-62708-200-6
... cooling because of the absence of crystallization. Besides the possibly large volume effects due to recrystallization, mold shrinkage becomes proportional to the thermal expansivity of a polymer. The addition of fillers to the polymer matrix, particularly those with effective wetting characteristics...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... shelf life before molding (unlike thermosetting matrices) and because they can potentially be remolded by the application of heat and pressure, thermoplastic-matrix composites also offer the possibility of lower-cost fabrication. However, cross-linking or thermal degradation with repeated temperature...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
... Abstract This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... Abstract The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003046
EISBN: 978-1-62708-200-6
... Materials Handbook, ASM International, 1990, p 821–828 M.M. Schwartz, Joining of Composite Matrix Materials, ASM International, 1994, p 69–77 The five repair joint concepts shown in Fig. 2 were developed for generic laminate repair. Each of these will be discussed in detail. Fig. 2 Repair...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.9781627081955
EISBN: 978-1-62708-195-5
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... strengths and moduli as those achieved with resin matrix composites. Moreover, because their properties are maintained to 2000 °C (3650 °F), they represent the premier material for inert atmosphere or short-time high-temperature applications. Table 7 shows typical mechanical properties of unidirectional...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003042
EISBN: 978-1-62708-200-6
... related and totally independent of the material matrix. Therefore, the cutting tools, feed rates, and rotational speeds to be discussed are applicable to thermoplastic, bismaleimide, polyimide, and epoxy matrices, as well as to hybrids of composites and metals. Focused laser beams are used to...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003002
EISBN: 978-1-62708-200-6
... mechanical properties reinforced engineering thermoplastics thermoset-matrix unidirectional advanced composites thermosets unreinforced engineering thermoplastics Table 1 Properties of thermoplastics Room-temperature data for unreinforced, general-purpose grades Material Specific gravity...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003035
EISBN: 978-1-62708-200-6
... Abstract Sheet molding compound (SMC) is a composite material - consisting of glass-fiber-reinforced polyester in a resin matrix - that’s available in sheet form for the production of compression-molded parts. This article discusses the components incorporated into the resin paste, including...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003038
EISBN: 978-1-62708-200-6
... edges and delamination. A suitable alternative is still being sought for these composites. A composite is, by definition, a combination of reinforcing fibers surrounded by a stress-transferring medium or matrix that allows the development of the full properties of the reinforcing fibers. The level of...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... Abstract This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003052
EISBN: 978-1-62708-200-6
... bertrandite ores High thermal conductivity High electrical resistivity Substrates (heatsinks) in electronics SiC Acheson process: SiO 2 + C → SiC + CO Pyrolysis of polycarbosilanes Extreme hardness Resistance to thermal shock Wear parts As a fiber whisker or particle in metal-matrix composites and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003008
EISBN: 978-1-62708-200-6
... produce higher-performance engineering plastics. A composite is defined here as a material containing a resin matrix and a reinforcing agent, such as fiber. Heat and ultraviolet stabilizers, flame retardants, and other ingredients can be compounded into the resins to improve certain properties...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001241
EISBN: 978-1-62708-170-2
... important to understand whether a composite is dominated by a “hard” or “soft” matrix, as outlined in Table 3 . This distinction is crucial in developing rational and economical finishing methods. Table 3 Matrix material that influences the finishing difficulty of typical composites Composite...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
... appropriate procedures exist. In multiphase alloys, the rates of polishing of different phases often are not the same. Polishing results depend heavily on whether the second or third phases are strongly cathodic or anodic with respect to the matrix. The matrix is dissolved preferentially if the other...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... a region close to the fracture in a steam pipe of a CrMo steel that failed by creep. In Fig. 35(a) , the specimen has been repeatedly polished and etched to open voids where carbides have precipitated on grain boundaries and are decoherent with the matrix. There is the appearance of extensive creep...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003036
EISBN: 978-1-62708-200-6
... temperature. To ensure adequate handling, wet-out, and fiber impregnation, the matrix must be liquid at room temperature. A sufficient time interval must exist during part lay-up to permit the entire part to be laid up before solidification. This time interval is called gel time. After lay-up of the part is...