1-20 of 410 Search Results for

thermoplastic composites

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003419
EISBN: 978-1-62708-195-5
... Abstract This article describes the characteristics of thermoplastic composites and its material forms. It presents the steps and considerations in manufacturing the thermoplastic composites. The article describes the various techniques of manufacturing, such as consolidation, autoclave molding...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003425
EISBN: 978-1-62708-195-5
... Abstract Advanced thermoplastic composites possess impact resistance, fracture toughness, and elevated temperature endurance properties due to their melt-fusible nature. This article presents the material options available for thermoplastic composites such as pseudothermoplastics, post...
Image
Published: 01 January 2001
Fig. 13 Construction of two-piece thermoplastic composite access panels. Exploded views (not to scale). Section views show outer skin bonded to reinforcement. More
Image
Published: 01 January 2001
Fig. 8 Thermoplastic composite recycling More
Image
Published: 01 June 2024
Fig. 28 Gross in-plane fiber waviness in the spar of a thermoplastic composite I-beam. Original magnification: 1×. Source: Ref 88 ; original courtesy of Ministry of Defence, QinetiQ, and Ref 88 More
Image
Published: 01 December 2004
Fig. 4 Crystallinity in thermoplastic-matrix carbon fiber composites. (a) Crystalline region in the center area of a woven carbon fabric composite cross section. Ultrathin section, transmitted polarized light with a full wave plate (540 nm), 20× objective. (b) Fiber-induced spherulite growth More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001466
EISBN: 978-1-62708-173-3
... Abstract Successful adhesive bonding of organic-matrix composites is dependent on the nature of the adherend surfaces. This article emphasizes the critical importance of proper surface preparation in both thermoset and thermoplastic composites. It provides information on surface preparation...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... Abstract This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003423
EISBN: 978-1-62708-195-5
... two articles, “Secondary Adhesive Bonding of Polymer-Matrix Composites” and “Processing and Joining of Thermoplastic Composites,” cover major assembly operations. Secondary adhesive bonding can be used either as a structural fabrication process (e.g., for honeycomb structure) or as an assembly...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003368
EISBN: 978-1-62708-195-5
... Abstract This article provides information on the thermoplastic resins used as matrix materials for continuous fiber reinforced composites. It focuses on the materials that are suitable for fabrication of structural laminates and used for aerospace applications. The article provides...
Image
Published: 01 January 2001
(advanced thermoplastic composites manufacturing methods): compaction roller deforms both thermoplastic resin and preimpregnated fiber network. Examples are thermoplastic sheet forming, thermoplastic pultrusion, and tape laying. (c) Porous media manufacturing methods (advanced thermoset manufacturing More
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
... Abstract This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... that add weight and increase cost in terms of assembly time. Thermoplastic composites offer design advantages because they can be joined in more ways than thermosetting materials, which are limited to fasteners and adhesive bonding. The meltability of thermoplastics and their rapid forming...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001468
EISBN: 978-1-62708-173-3
... be divided into thermoset composites (resin chemical reaction during 120 to 175 °C, or 250 to 350 °F cure) and thermoplastic composites (resin melt fuse between 315 and 400 °C, or 600 and 750 °F). Thermoset composites can be joined to metals by adhesive bonding, whereas thermoplastic composites can be joined...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003466
EISBN: 978-1-62708-195-5
... from epoxy matrix materials. Minimal fractographic data from other brittle thermoset resin systems are also presented. The article discusses the interlaminar fracture of composites with ductile thermoplastic matrices. It also provides information on the translaminar fracture features of the composite...
Image
Published: 01 January 2001
Fig. 20 Fracture feature known as matrix rollers on the surface of a carbon/KIII thermoplastic composite, following failure under mode II shear loading conditions. 1000× More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001469
EISBN: 978-1-62708-173-3
... welding welding evaluation methods POLYMERS AND POLYMERIC COMPOSITES are attractive because of their high strength-to-weight ratio, chemical inertness, and ability to be molded into complex shapes at relatively low cost. Polymers can be categorized as thermosets or thermoplastics. In the case...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009082
EISBN: 978-1-62708-177-1
... Abstract Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This article focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation...
Image
Published: 01 December 2004
Fig. 9 Thermoplastic stitch in carbon fiber composite material. Note the microcracks in the of the stitch. Epi-fluorescence, 390–440 nm excitation, 25× objective More
Image
Published: 01 December 2004
Fig. 14 Thermoplastic fiber-reinforced composite with the microcracks dyed using Magnaflux Spotcheck SKL-H. Dark-field illumination, 25× objective More