Skip Nav Destination
Close Modal
Search Results for
thermomechanical treatment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 431 Search Results for
thermomechanical treatment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 2016
Image
Published: 01 January 2005
Fig. 2 Comparison of selected thermomechanical treatments based on critical austenite temperatures, transformation temperatures, and rough and finish rolling operations. A, conventional hot rolling; B, conventional controlled rolling; C, intensified (intercritical) controlled rolling; D
More
Image
Published: 01 January 1996
Fig. 58 Effects of intermediate thermomechanical treatments (ITMT) on (a) fatigue crack initiation and (b) fatigue crack propagation of 7XXX aluminum alloys. Source: Ref 113
More
Image
Published: 15 June 2019
Fig. 49 Effects of intermediate thermomechanical treatments (ITMT) on (a) fatigue crack initiation and (b) fatigue crack propagation (FCP) of 7 xxx aluminum alloys. LCF, low-cycle fatigue; CP, commercially pure. Source: Ref 96
More
Image
Published: 01 January 1996
Fig. 59 Effects of grain size and aging treatment on the FCGR of intermediate thermomechanical treatment (ITMT) alloy 7045: (a) tests in vacuum, and (b) tests in laboratory air. Differences in a vacuum could not be accounted for by closure effects. Source: Ref 115
More
Image
Published: 15 June 2019
Fig. 50 Effects of grain size and aging treatment on the fatigue crack growth rate of intermediate thermomechanical treatment (ITMT) alloy 7045. (a) Tests in vacuum. (b) Tests in laboratory air. Differences in a vacuum could not be accounted for by closure effects. Source: Ref 98
More
Image
Published: 01 January 2005
Fig. 5 Percentage of recrystallized structure in wedge-test specimens after various thermomechanical treatments performed on a high-nitrogen stainless steel. OQ, oil quench. Source: Ref 11
More
Image
Published: 01 January 1996
Fig. 57 Crack growth data for compact tension specimens from commercially processed (CP) plate and experimental intermediate thermomechanical treatment (ITMT) material in the as-recrystallized (AR) condition and the as-recrystallized plus hot-rolled (AR + HR) condition. The CP 7050 material
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005962
EISBN: 978-1-62708-168-9
... thermomechanical treatment COPPER STEELS are precipitation-strengthened steels that are designed to have a unique combination of physical and mechanical properties ( Ref 1 , 2 , 3 , 4 ). These steels are also designated as iron-copper steels, copper-bearing steels, copper age-hardenable steels, copper...
Abstract
Copper steels are precipitation-strengthened steels that are designed to have a unique combination of physical and mechanical properties. This article provides an overview of copper precipitate-strengthened steels and their applications, and discusses appropriate ASTM International standards. It describes the common phases and alloying elements present in copper precipitate-strengthened steels, and reviews the influences of alloying elements on processing, phase diagrams, microstructures, and mechanical properties. The article also discusses the thermomechanical process, solutionizing heat treatment, and isothermal aging in detail. It concludes with a review of the interrelationships between heat treatments, microstructures, and mechanical properties.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... operation lends itself to considerable control of the thermomechanical treatment. The slab reheat temperature can be reduced if desired. In fact, some rolling strategies involve only reheating to 960 °C (1760 °F) prior to rolling. Delays can be built into the rolling operation (although with some penalty...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Image
Published: 01 June 2012
Fig. 4 Typical thermomechanical processing sequence for alpha-beta titanium forgings. Typical temperatures during processing would be 955 °C (1750 °F) for the forging and solution treatment, 730 °C (1350 °F) for annealing, and 540 °C (1000 °F) for aging. Typical times during processing would
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005963
EISBN: 978-1-62708-168-9
... Abstract This article provides a detailed discussion on the effect of boron in heat-treated steel and thermomechanically-simulated steel. It describes the boron hardenability mechanism and the effect of composition and heat treatment parameters on boron hardenability. The article examines...
Abstract
This article provides a detailed discussion on the effect of boron in heat-treated steel and thermomechanically-simulated steel. It describes the boron hardenability mechanism and the effect of composition and heat treatment parameters on boron hardenability. The article examines the hardening behavior of unalloyed boron steel and low-alloyed boron steel in heat treatment experiments by varying the austenitizing temperatures and cooling conditions. It also discusses the applications of boron steels.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... Abstract The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides...
Abstract
The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides a detailed discussion on the effects of heat treatment on the mechanical properties for three general classes of titanium alloys, namely, alpha and near-alpha titanium alloys, alpha-beta alloys, and beta alloys.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005994
EISBN: 978-1-62708-168-9
... technology, continuous cooling transformation (CCT) diagrams, thermomechanical processing technologies, and optimized cooling technologies. Direct heat treatment processes have also made significant contributions to product quality through piece-by-piece handling. Like DFQ processes, they eliminate the need...
Abstract
This article provides general information on the definition, purposes, and quench equipment for direct-forge quenching (DFQ) and direct heat treatment (DHT) processes that are widely used in automotive and various other mechanical industries. It discusses the technological advances in these processes and their ability to produce high-quality components at low production cost from microalloyed steels. Further, the article describes the influence of carbon contents on toughness of microalloyed direct heat treated steels. It focuses on the DFQ and DHT steel technologies applied in continuous rolling mills to produce various DHT steels for machining and cold forming applications.
Image
Published: 01 January 1996
Fig. 34 S - N curves for Ti-6242 at 550 °C with a fine lamellar microstructure and without a thermomechanical surface treatment. Source: Ref 49
More
Image
Published: 01 January 1996
Fig. 33 S - N curves for coarse-grained Ti-8.5Al at 350 °C with and without thermomechanical surface treatment for local grain refinement. Source: Ref 49
More
Image
in Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
> Steel Heat Treating Technologies
Published: 30 September 2014
Fig. 2 Decoupled simulation strategy for simulation of heat treatments: step 1, thermometallurgical analysis; step 2, thermomechanical analysis. TTT, time-temperature-transformation; CCT, continuous cooling transformation; CFD, computational fluid dynamics
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005229
EISBN: 978-1-62708-187-0
... before thermomechanical processing. The article lists the objectives of homogenization and benefits of homogenization treatments. The benefits include increased resistance to pitting corrosion, increased resistance to stress-corrosion cracking, improved ductility, and uniform precipitate distribution...
Abstract
Homogenization, in a broad sense, refers to the processes designed to achieve uniform distribution of solutes or phases in a given matrix. This article addresses the root cause for inhomogeneities in cast components. It is nearly a standard industrial practice to homogenize alloys before thermomechanical processing. The article lists the objectives of homogenization and benefits of homogenization treatments. The benefits include increased resistance to pitting corrosion, increased resistance to stress-corrosion cracking, improved ductility, and uniform precipitate distribution during subsequent aging. The article provides a schematic illustration of an energy-dispersive X-ray spectroscope (EDS) scattered data of solute distributions across a dendrite due to microsegregation of chromium and molybdenum. It concludes with information on the computational modeling for simulation of microsegregation of chromium and molybdenum.
Image
Published: 01 October 2014
Fig. 1 Plots of temperature versus time showing sequence of operations required to produce tool steels. (a) Thermomechanical processing. (b) Hardening heat treatment. L, liquid; A, austenite; C, cementite; F, ferrite; M s , temperature at which martensite starts to form on cooling; RT, room
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
... Abstract This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize...
Abstract
This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize them using differential scanning calorimeter (DSC) techniques as well as other methods. The article examines the most common shape memory alloys, namely, nickel-titanium and copper-base SMAs, and provides information on their respective properties.
1