1-20 of 260 Search Results for

thermomechanical simulation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... are summarized in the article “Modeling of Microstructure Evolution during the Thermomechanical Processing of Titanium Alloys” in this Volume. A number of general considerations related to the characterization, modeling, and simulation of texture are treated in other articles in this Volume...
Image
Published: 01 December 2009
Fig. 19 Thermomechanical history in a physical simulation experiment More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005604
EISBN: 978-1-62708-174-0
...Abstract Abstract This article focuses on the necessary basics for thermomechanical fusion welding simulations and provides an overview of the specific aspects to be considered for a simulation project. These aspects include the required material properties, experimental data needed...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005963
EISBN: 978-1-62708-168-9
...Abstract Abstract This article provides a detailed discussion on the effect of boron in heat-treated steel and thermomechanically-simulated steel. It describes the boron hardenability mechanism and the effect of composition and heat treatment parameters on boron hardenability. The article...
Image
Published: 01 August 2018
Fig. 32 Laser-ultrasonics coupled to a Gleeble 3500 (Dynamic Systems Inc.) thermomechanical simulator More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
...Abstract Abstract This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
...Abstract Abstract Additive manufacturing produces a change in the shape of a substrate by adding material progressively. This article discusses the simulation of laser deposition and three principal thermomechanical phenomena during the laser deposition process: absorption of laser radiation...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005238
EISBN: 978-1-62708-187-0
... steel slabs solidification stress finite element formulation arbitrary Lagrangian Eulerian method braking disks thermomechanical coupling COMPUTATIONAL MODELING of mechanical behavior during solidification is becoming more . Thermal and microstructural simulations alone are insufficient...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006575
EISBN: 978-1-62708-290-7
...-based thermomechanical modeling to simulate the LPBF additive manufacturing process. The diameter of the heat source for LPBF processes is much smaller than for DED processes. Because spatial discretization requirements for moving-source analyses depend on the size of the heat source, simulations...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005229
EISBN: 978-1-62708-187-0
... alloys before thermomechanical processing. The article lists the objectives of homogenization and benefits of homogenization treatments. The benefits include increased resistance to pitting corrosion, increased resistance to stress-corrosion cracking, improved ductility, and uniform precipitate...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
...-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation. accuracy incremental forging metal forming metal products metal...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
...Abstract Abstract The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
... simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena. deformation metal-forming microforming surface interactions...
Image
Published: 01 December 2009
Fig. 11 Results of the ClaNG microchemistry simulation of the evolution of (a) concentration of solutes ( c ss ) and (b) volume ( V ) and size ( r ) of precipitating dispersoids during the thermomechanical processing of AA 3104 hot strip More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... variables to achieve maximum benefit from the microstructural evolution as well as achieving dimensional accuracy has led to increasing use of the term “thermomechanical processing” applied to hot rolling, forging, and extrusion in which the choice of processing conditions recognizes their positive...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005414
EISBN: 978-1-62708-196-2
...Abstract Abstract Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
...Abstract Abstract This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005619
EISBN: 978-1-62708-174-0
... friction heat generation material behavior metal sheets metal wires metallurgical bonds oscillating shears plastic deformation thermomechanical process ultrasonic energy ultrasonic welding vibration ULTRASONIC WELDING (UW), as a solid-state joining process, uses an ultrasonic energy source...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... of computers, conducted simulation studies were focused on axisymmetric shapes such as solid and hollow cylinders of finite height. Because of improved thermomechanical models, the quality of predictions of residual stress and distortion improved significantly. One of the major reasons for this improvement...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
... and transformation plasticity strain components, respectively ( Ref 7 , 28 , 29 ). Equation 10 is the equation for isotropic hardening, where f is the yield function, σ e is the von Mises stress, and σ y is the yield stress. Active yielding occurs when f = 0. The thermomechanical simulations...