Skip Nav Destination
Close Modal
Search Results for
thermoelastic stress analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
thermoelastic stress analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006451
EISBN: 978-1-62708-190-0
... Abstract Thermoelastic stress analysis (TSA) an increasingly popular infrared (IR)-based technique for measuring stress on the surface of a part subjected to time-varying loads. This article begins by providing a theoretical and historical background of thermoelastic stress analysis...
Abstract
Thermoelastic stress analysis (TSA) an increasingly popular infrared (IR)-based technique for measuring stress on the surface of a part subjected to time-varying loads. This article begins by providing a theoretical and historical background of thermoelastic stress analysis. It then describes infrared detectors, such as quantum detectors and thermal/nonquantum detectors, for thermoelastic stress analysis. The article discusses the theoretical aspects for producing thermoelastic stress analysis data and the applications amenable to thermoelastic stress analysis. It concludes with information on the qualitative applications of thermoelastic stress analysis.
Image
Published: 01 August 2018
Fig. 3 Thermoelastic stress analysis (TSA) results from fatigue cycling of open hole aluminum specimen. Data is subdivided into (a) X -data, (b) Y -data, (c) magnitude, and (d) phase as described in the section “ Thermoelastic Data ” in this article.
More
Image
Published: 01 August 2018
Fig. 6 (a) Raw TSA images during test. (b) Thermoelastic stress analysis image generated by subtracting uncracked image from all subsequent images. Source: Ref 40
More
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
... and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features...
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005435
EISBN: 978-1-62708-196-2
... to experimental displacement fields based on detailed analysis of surface-relief effects from isolated martensite plates in ferrous alloys. Modification of the invariant plane-strain elastic strain energy (and the associated particle internal stress parameter, τ i ) is taken into account by a radial...
Abstract
This article assesses the evolution of martensite modeling in the changing materials engineering environment. It describes the physics of displacive transformations using Ginzburg-Landau theory, microstructure representation, dynamics and simulations, density functional theory, and shuffle transitions. The article reviews the application of the Ginzburg-Landau approach to rigorous solutions for issues in the structure of a martensitic nucleus based on the martensitic nucleation theory. The three basic behavior modes of martensitic growth, such as elastic, elastic/plastic, and fully plastic are discussed. The article also reviews the overall kinetics of martensitic transformations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005619
EISBN: 978-1-62708-174-0
... ( Ref 44 ). Gao and Doumanidis ( Ref 17 , 18 ) analyzed the mechanics of metal UW. They developed a 2-D, quasi-static/dynamic, elasto-plastic numerical model of the stress/strain field through FE analysis. In the study by de Vries ( Ref 2 ), mechanics-based models were developed, along with a model...
Abstract
Ultrasonic welding (UW), as a solid-state joining process, uses an ultrasonic energy source and pressure to induce oscillating shears between the faying surfaces to produce metallurgical bonds between a wide range of metal sheets and wires. This article reviews the models of the ultrasonic welding with an emphasis on governing equations, material behavior, and heat generation of the process. It discusses the resulting factors, namely, vibration, friction, temperature, and plastic deformation as well as the bonding strength and its mechanism.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
..., the transformation from austenite to martensite can be accomplished solely by deformation, without a quenching process. Two different types of this deformation-induced martensite have been observed: stress assisted and strain induced ( Ref 15 ). Stress-assisted martensite is produced when an applied stress provides...
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006460
EISBN: 978-1-62708-190-0
... Thermoelastic Generation The principle of thermoelastic generation is this: Laser light is absorbed to some depth inside the material, releasing heat locally; the heated region then expands, producing a strain and a corresponding stress that is the source of waves propagating in the material or at its...
Abstract
Laser-ultrasonics is a particular implementation of ultrasonic nondestructive inspection in which ultrasound is generated and detected by lasers. This article discusses the various mechanisms that ensure ultrasound generation and explains the possibility to get the equivalent of phase-array by numerical processing of an array of previously acquired laser-ultrasonic signals. The article describes the ultrasound generation by thermoelastic mechanism and ablation or vaporization. It illustrates the principle of optical detection of ultrasound with confocal Fabry-Perot interferometer and photorefractive two-wave mixing interferometer. The article concludes with information on the industrial applications of laser-ultrasonics, including thickness measurement, flaw detection, and material characterization.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003378
EISBN: 978-1-62708-195-5
... Abstract The properties of unidirectional composite (UDC) materials are quite different from those of conventional, metallic materials. This article provides information on the treatment of UDC stress-strain relations in the forms appropriate for analysis of thin plies of material. It explains...
Abstract
The properties of unidirectional composite (UDC) materials are quite different from those of conventional, metallic materials. This article provides information on the treatment of UDC stress-strain relations in the forms appropriate for analysis of thin plies of material. It explains the development of the relations between mid-surface strains and curvatures and membrane stress and moment resultants. The article discusses the properties, such as thermal expansion, moisture expansion, and conductivity, of symmetric laminates and unsymmetric laminates. It describes the distribution of temperature and moisture through the thickness of a laminate. Stresses caused due to mechanical loads, temperature, and moisture on the laminate are analyzed. The article concludes with information on interlaminar cracking, free-edge delamination, and transverse cracks of laminates.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003780
EISBN: 978-1-62708-177-1
... be heat treated to hardnesses ranging from approximately 92 HRB to 55 HRC. Metallography is a useful tool for quality assurance, failure analysis, and understanding the effects of processing on the properties of uranium and its alloys. Natural uranium consists of two primary isotopes: U 235 (0.7...
Abstract
This article discusses the principles of physical metallurgy and metallography of depleted uranium. It describes the techniques involved in the preparation of thin foils for transmission electron microscopy and illustrates the resulting microstructure of uranium and uranium alloys, with the aid of black and white images. The article also provides information on the applications of etching and examination of uranium alloys, at both macro and micro scales, in characterizing the grain structures, segregation patterns, inclusions, and the metal flow geometries produced by solidification and mechanical working processes.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005726
EISBN: 978-1-62708-171-9
... Spraying by Explicit Finite Element Analysis , J. Therm. Spray Technol. , Vol 18 ( No. 5–6 ), mid-Dec 2009 , p 921 – 933 16. Samareh B. , Stier O. , Luthen V. , and Dolatabadi A. , Assessment of CFD Modeling via Flow Visualization in Cold Spray Process , J. Therm. Spray...
Abstract
A major effort in the development of thermal spray applications has been the improvement of process reliability and predictability in response to process changes. The ability to model a process is a prerequisite to understanding and controlling it. This article provides an overview of thermal spray process modeling, as it applies to the engineering of new thermal spray equipment and coating development.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
... that exist within isolated unidirectional laminae as well as those that are caused by laminating together plies of different fiber orientations. The former set are customarily referred to as intralaminar thermal stresses and the latter as interlaminar thermal stresses. The basic analysis is performed...
Abstract
This article presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals and attributes of this method. The article then addresses the characterization of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix fails first, either by intent, by design error, or because of impact damage. The state of the modeling propagation and arrest of matrix damage follows. Comparisons of this physics-based approach are then made to empirically based failure theories.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006409
EISBN: 978-1-62708-192-4
... in full-film lubrication. The article also discusses the viscous heating temperature measurements and numerical analysis of viscous heating. frictional heating full-film lubrication lubricated contacts viscous heating MECHANICAL COMPONENTS such as bearings, cams and followers, gears, and so...
Abstract
This article provides an overview of experimental, analytical, and numerical tools for temperature evaluation of dry and lubricated systems. It describes the analytical methods and numerical techniques for frictional heating and temperature estimation, as well as viscous heating in full-film lubrication. The article also discusses the viscous heating temperature measurements and numerical analysis of viscous heating.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
.... , Tiedje N. , and Hattel J. , A Micro-Mechanical Analysis of Thermoelastic Properties and Local Residual Stresses in Ductile Iron Based on a New Anisotropic Model for the Graphite Nodules , Model. Simul. Mater. Sci. Eng. , Vol 24 ( No. 5 ), 2016 , p 055012 10.1088/0965-0393/24/5/055012...
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006446
EISBN: 978-1-62708-190-0
... for the deformation-induced change of the propagation distance ( Ref 5 ). Further technical details can be found in Ref 2 , 10 , 17 , and 26 . In addition, it may be necessary to correct for temperature changes caused by the thermoelastic effect. Under adiabatic conditions, a harmonic uniaxial stress...
Abstract
Nonlinear ultrasonic nondestructive examination (NDE) techniques are based on nonlinear interaction of ultrasonic waves with the material to be characterized and defects to be detected. This article introduces the basic principles of nonlinear material-wave interaction, the origin of intrinsic nonlinearity in intact solids, and the main mechanisms of excess nonlinearity in damaged metals. It describes the measurement methods for nonlinear ultrasonic materials characterization and flaw-detection. The article schematically illustrates the instrumentation used for measurements of longitudinal wave and Rayleigh surface acoustic waves. It concludes with information on the applications of nonlinear ultrasonics.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003377
EISBN: 978-1-62708-195-5
... approach. For purposes of laminate analysis, it is important to consider the plane-stress version of the effective stress-strain relations. Let x 3 be the normal to the plane of a thin, unidirectionally reinforced lamina. The plane-stress condition is defined by: (Eq 9) σ ¯ 33 = σ...
Abstract
A unidirectional fiber composite (UDC) consists of aligned continuous fibers that are embedded in a matrix. This article describes a variety of analytical methods that are used to determine the various physical properties of the UDC. These properties include elasticity, thermal expansion coefficients, moisture swelling coefficients, static and dynamic viscoelastic properties, conductivity, and moisture diffusivity.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... for a given component analysis. Here p i is the probability of failure of the i th discrete element. In the next section an expression is specified for the probability of failure (or alternatively, the reliability) of the i th discrete element for a simplified state of stress, that is, a uniaxial...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005947
EISBN: 978-1-62708-166-5
... of Fig. 15 remain in the material as residual stresses. This residual-stress distribution, with tensile stresses in the core and compressive stresses near the surface, is typical for quenched materials without phase transformation. Size and Shape Changes This analysis indicates that dimensional...
Abstract
Dimensional and shape changes caused by heat treatment have been the subject of scientific and industrial research for a very long time. This article provides an overview of the complexity of distortion and stress generation during heat treatment of steels. It discusses the measurement and evaluation of dimensional and shape changes with examples. The article describes the mechanisms at work during the generation of stresses and distortion during heat treatment. A hypothetical experiment with increasing application to real life is used to develop a systematization of unavoidable size and shape changes. The article also provides information on the carriers of distortion potential that cause measureable size and shape changes.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... phenomena involved. Simulation results were commonly confirmed by microstructural analysis, hardness tests, and dimensional and x-ray diffraction (XRD) residual stress measurements. Although some results (such as prediction of temperature history, hardness distributions, and volume changes) were promising...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures...
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
1