Skip Nav Destination
Close Modal
Search Results for
thermocouple wires
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 74 Search Results for
thermocouple wires
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003158
EISBN: 978-1-62708-199-3
...-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment. electrical insulation environmental protection...
Abstract
Thermocouple devices are the most widely used devices for measurement of temperature in the metals industry. Favorable characteristics of these devices include good accuracy, suitability over a wide temperature range, fast thermal response, ruggedness, high reliability, low cost, and great versatility of application. Thermocouples are grouped into two broad categories, namely, standard thermocouples, including five base-metal thermocouples and three noble-metal thermocouples that have been given letter designations, and nonstandard thermocouples, including iridium-rhodium, platinum-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... for creating preferential grain orientations with isotropic mechanical properties. It includes warm/cold deformation processes such as forging, rolling, extrusion, and wire and tube drawing. Most thermomechanical processing is done to minimize texture effects. The heat treatment method incorporated...
Abstract
This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides information on the effects of alloying elements on alpha/beta transformation. The article also discusses the heat treating procedures, and the furnaces used for heat treating titanium and titanium alloys.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005925
EISBN: 978-1-62708-166-5
... prepared new tables of thermocouple electromotive force (emf) values ( Ref 5 ) for ITS-90. Of the various sensors used to measure temperature in heat treating furnaces, the most common is thermocouples. Thermocouples consist of two dissimilar wires joined at one end, forming a measuring, or hot, junction...
Abstract
Temperature control in heat treating is of paramount importance in maintaining the quality and achieving the desired metallurgical results. This article provides a detailed account of the factors affecting temperature control in heat treating furnaces, with information on temperature control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation thermometers fall under the noncontact type. The article describes two types of instrumentation used in heat treating: field test instruments for temperature-uniformity surveys and system-accuracy tests; and controlling, monitoring, and recording instruments for digital instrumentation.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
... monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control...
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003239
EISBN: 978-1-62708-199-3
... inspection devices include bolometers, thermocouples, thermopiles, and meltable substances, whereas radiometers and pyrometers come under the noncontact category. contact thermographic inspection contact thermometric inspection noncontact thermographic inspection noncontact thermometric inspection...
Abstract
Thermal inspection comprises all methods in which heat-sensing devices or substances are used to detect irregular temperatures. Inspection of workpieces can be used to detect flaws and undesirable distribution of heat during service. Though there are several methods of thermal inspection and many types of temperature-measuring devices and substances, this article focuses only on thermography, which is the mapping of isotherms, or contours of equal temperature, over a test surface, and on thermometry, which is the measurement of temperature. Thermography techniques can be classified as contact thermographic methods using cholesteric liquid crystals, thermally quenched phosphors, and heat-sensitive paints, and noncontact techniques using hand-held infrared scanners, high-resolution infrared imaging systems, and thermal wave interferometer systems. Contact thermometric inspection devices include bolometers, thermocouples, thermopiles, and meltable substances, whereas radiometers and pyrometers come under the noncontact category.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005922
EISBN: 978-1-62708-166-5
... transformation on heating and/or cooling. To investigate the cooling characteristics and the transformation behavior of the steel to be tested, a steel wire probe was designed ( Ref 16 ) with a built-in thermocouple located at the geometric center, as shown in Fig. 1 . When the wire probe was quenched from...
Abstract
This article focuses on the cooling process and related transformation behavior of steel wires during patenting to identify a physical metallurgical basis for the development of nontoxic alternatives to molten lead for wire patenting. It describes the materials required, the procedures, and the results of cooling curve analysis. The article schematically summarizes the cooling behaviors of the various cooling media and the microstructure of the pearlite transformation in a lead bath.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003015
EISBN: 978-1-62708-200-6
... extrusion, chill-roll film extrusion, pipe or tube extrusion, wire and cable coverings, extrusion coating, and profile extrusion, and provides some discussion on multiple-screw extruders. The article describes the dimensional accuracy of extrusion products, and lists common defects that occur frequently in...
Abstract
This article describes the extrusion process, which converts soft, plastic material into a particular form using an extruder, or screw conveyer. It discusses the two main types of plastic extruders, twin-screw and single-screw, estimation of extruder capacity, and design and operations (heating, cooling, downstream sizing, corrugating, and crossheading) of the screw, the most important component of any extruder. It discusses the shapes produced by screw extrusion and the types of extrusion products produced by extrusion processes, including blown-film extrusion, flat-film or sheet extrusion, chill-roll film extrusion, pipe or tube extrusion, wire and cable coverings, extrusion coating, and profile extrusion, and provides some discussion on multiple-screw extruders. The article describes the dimensional accuracy of extrusion products, and lists common defects that occur frequently in the extrusion process.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005928
EISBN: 978-1-62708-166-5
..., chromatographs, oxygen probes, Orsat analyzers, infrared analyzers, dewpoint analyzers, and hot-wire analyzers. Finally, it discusses the advantages, disadvantages, and limitations of these analyzers. atmosphere control carbon potential dew point gas chromatography heat treating furnaces heat...
Abstract
The atmosphere within a furnace chamber is a basic factor in achieving the desired chemical reactions with metals during heat treating. This article presents the fundamentals of heat treating atmospheres, and describes two groups of atmosphere control, namely, furnace atmosphere control and supply atmosphere control. The two basic types of atmospheric supply systems are generated atmospheres and nitrogen-base atmospheres. The article provides a brief overview of the gas reactions associated with oxidation and carbon control to ensure either carburization, or to prevent decarburization. It demonstrates how the carbon potential control is achieved by controlling water vapor concentration, carbon dioxide concentration, or oxygen partial pressure. The article also describes the various devices and analyzers used to monitor sampled gas from furnace atmospheres, namely, chromatographs, oxygen probes, Orsat analyzers, infrared analyzers, dewpoint analyzers, and hot-wire analyzers. Finally, it discusses the advantages, disadvantages, and limitations of these analyzers.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005968
EISBN: 978-1-62708-166-5
...? Care must be taken to ensure that thermocouple wire size and type are appropriate for their intended use and are not used outside of their recommended upper temperature limit. Guidance on these limitations can be found in current revisions of publications such as ASTM E 230 ( Table 4 , Ref 15 ), ASTM...
Abstract
The heat treatment of steel involves a number of processes (such as stress relieving, normalizing, annealing etc) to condition the microstructure and obtain desired properties. This article discusses typical heat treating process control procedures for carbon and low-alloy steels, as well as the importance of time, and temperature control in heat treatment. Temperature Uniformity Survey, a testing procedure intended to map variations in temperature throughout the furnace work zone, helps in precise control of temperature. The article focuses on the measuring instruments used to determine gas pressure, vacuum level, gas flow, and gas composition. It focuses on their measuring quenchant characteristics, including bulk temperature, viscosity, composition, and cooling efficiency. The article describes the procedures for detecting variability in the incoming product. It presents, through an example, the general application of design of experiments techniques to locate and tune vital process parameters. The devices used in the control process of mechanical components are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... temperature (DBTT) for the material. The most common alloys contain 5, 41, and 50% (actually 47.5%) Re. The 5Re and 41Re alloys are used for thermocouple wire and for structural applications in the aerospace market. The W-50Re alloy is typically specified for high-temperature structural components. One...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005423
EISBN: 978-1-62708-196-2
... minimize error in the temperature measurement and variability in the casting trials. Once thermocouple data are collected, the calibration-curve method is a simple, robust method for determining values of h ( T ) from thermocouple data for different interface types. The process of collecting T ( t...
Abstract
A key aspect of solidification process modeling is the treatment of the interface between the solidifying casting and the mold in which it is contained. This article begins with information on casting-mold interface heat-transfer phenomena. It describes practical considerations and methods for incorporating interface heat-transfer coefficient into models and for quantifying the heat transfer coefficient experimentally. The article concludes with information on the selection of the heat transfer coefficient for a given casting configuration.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006259
EISBN: 978-1-62708-169-6
... devices Pt-5%Ru 1000 1830 Air, preferably nitrogen or argon Not necessary Jewelry Pt-6%Rh, Pt-10%Rh, Pt-13%Rh 800–1000 1470–1830 Air, preferably nitrogen or argon Not necessary Thermocouple wire Pt-20%Rh 1000–1150 1830–2100 Air, preferably nitrogen or argon Preferred, to maintain...
Abstract
This article describes the annealing behavior of precious metals, namely, gold, silver, platinum, palladium, iridium, rhodium, ruthenium, and osmium. It discusses the annealing practices and their effect on the basic properties of common precious metal alloys. The article presents the typical properties and compositions of silver-copper alloys and gold jewelry alloys such as colored gold alloys and white gold alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003199
EISBN: 978-1-62708-199-3
... periodically to ensure that they are in good working condition. Thermocouples consist of two dissimilar wires that are metallurgically homogeneous. They are joined at one end, called the measuring, or hot, junction. The other end, which is connected to the copper wire of the measuring instrument...
Abstract
Control of temperature and furnace atmospheres has become increasingly critical to successful heat treating. Temperature instrumentation and control systems used in heat treating include temperature sensors, controllers, final control elements, measurement instruments, and set-point programmers. This article describes these items and discusses the classifications and control of furnace atmospheres. The article also describes the surface carbon control devices available for the wide variety of furnace atmospheres and evaluation of carbon control. Finally, the article provides a set of guidelines for safety procedures that are common to all industrial heat treating furnace installations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005436
EISBN: 978-1-62708-196-2
... a specific quench tank? Will the number and placement of the thermocouples influence the conditions of flow within the quench tank and act as a “trip wire,” causing early nucleate boiling initiation? Many of these issues are practical ones, such as the availability of a limited number of...
Abstract
This article provides information on the various stages of quenching, sources of distortion, and factors that affect the creation of thermal gradients. It reviews the various determinations of heat-transfer coefficients by the thermal conductivity and diffusivity method, analytical and empirical methods, application of cooling curves, computational fluid dynamics, and the inverse conduction calculation and measurement of parts. Suitable examples are also provided.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... the specimen according to a programmed cycle. Therefore, a specimen can be tested under time and temperature conditions that simulate hot-working sequences. Fig. 1 Gleeble test unit used for hot-tension and hot-compression testing. (a) Specimen in grips showing attached thermocouple wires and...
Abstract
This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot-tension test data, which helps to gain information on a number of material parameters and material coefficients. It details the effect of test conditions on flow behavior. The article briefly describes the detailed interpretation of data from the isothermal hot-tension test using numerical model. It also explains the cavitation mechanism and failure modes that occur during hot-tension testing.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... tension and compression testing. (a) Specimen in grips showing attached thermocouple wires and liner variable differential transformer for measuring strain. (b) Closeup of a compression test specimen. Courtesy of Dynamics Systems, Inc. The specimen is loaded by a pneumatic-hydraulic system. The load...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006674
EISBN: 978-1-62708-213-6
... ferromagnetic core inside the LVDT conductive coil generates an electric signal by Faraday’s law of induction that is calibrated to microscopic displacement. A thermocouple parallel to the pushrod reports the temperature of the specimen. Water cooling is often used to maintain the LVDT at a reference...
Abstract
Thermomechanical analysis (TMA) is a thermal analysis technique in which the length of a specimen is precisely measured versus temperature and time as the specimen is subjected to controlled heating and cooling. This article discusses the various factors and processes involved in TMA. The discussion covers the general principles, equipment used, specimen preparation process, calibration conditions, data analysis steps, and examples of the applications and interpretation of TMA.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
... with a purity of at least 99.9% is required for alloying, laboratory ware, and contacts. Platinum of even higher purity, sometimes with controlled impurities, is used for other specialized applications such as thermocouples and resistance thermometers. The present U.S. thermometric standard platinum...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005955
EISBN: 978-1-62708-166-5
... temperature measurement is normally accomplished with thermocouples located in the vicinity of the heating elements. Usually a minimum of two thermocouples are employed, one for the furnace control and a second for over-temperature protection. In practice, the size of the hot zone may dictate multiple zone...
Abstract
Vacuum heat treating consists of thermally treating metals and alloys in cylindrical steel chambers that have been pumped down to less than normal atmospheric pressure. This article provides a detailed account of the operations and designs of vacuum furnaces, discussing their pressure levels, resistance heating elements, quenching systems, work load support, pumping systems, and temperature control systems. It describes the classification of instruments used for measuring and recording pressure inside a vacuum processing chamber. Common devices include hydrostatic measuring devices and devices for measuring thermal and electrical conductivity. The article also describes the applications of the vacuum heat treating process, namely, vacuum nitriding and vacuum carburizing. Finally, it reviews the heat treating process of tool steels, stainless steels, Inconel 718, and titanium and its alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003156
EISBN: 978-1-62708-199-3
... thermoelectric potential versus copper, which is the material normally used for the connecting conductor. Temperature differentials may exist among various junctions between a resistance wire and a connecting wire, resulting in a network of thermocouples that can cause parasitic electromotive forces in the...
Abstract
Electrical resistance alloys used to control or regulate electrical properties are called resistance alloys, and those used to generate heat are referred to as heating alloys. This article covers both alloy types, describing the construction and use of resistors as well as heating elements. It also discusses soldering and joining methods, sensitivity and stability factors, and various design coefficients. In addition, it provides a detailed account of the properties and applications of thermostat metals and discusses the design of resistance heaters and their operating ranges.