Skip Nav Destination
Close Modal
Search Results for
thermochemical boriding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32 Search Results for
thermochemical boriding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
... Abstract Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006436
EISBN: 978-1-62708-192-4
..., and ion plating surface modification treatments. The thermochemical conversion surface treatments include nitriding, carburizing, boriding, and solid lubrication. friction wear titanium alloys physical vapor deposition thermochemical conversion treatments ion implantation sputtering...
Abstract
This article describes the surface modification treatments used to modify the tribological properties of titanium alloys. These include physical vapor deposition and thermochemical conversion treatments. The physical vapor deposition includes ion implantation, sputtering, evaporation, and ion plating surface modification treatments. The thermochemical conversion surface treatments include nitriding, carburizing, boriding, and solid lubrication.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... in a viscous state. Water is added, and several layers of the paste are applied. The components then are either inductively heated in a protective atmosphere or placed in a controlled atmosphere furnace. Salt bath boriding involves either thermochemical or electrolytic techniques. Gas boriding is carried out...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006420
EISBN: 978-1-62708-192-4
... the structures of boride layers in ferrous materials and boride-layer structures in nickel-base superalloys. The primary reason for boriding metals is to increase wear resistance against abrasion and erosion. The article reviews the wear resistance and coefficient of friction of boride layers, as well as galling...
Abstract
Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes the structures of boride layers in ferrous materials and boride-layer structures in nickel-base superalloys. The primary reason for boriding metals is to increase wear resistance against abrasion and erosion. The article reviews the wear resistance and coefficient of friction of boride layers, as well as galling resistance of borided surfaces. It concludes with a discussion on boronizing plus physical vapor deposition (PVD) overlay coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... of the chromium in the remaining nickel-base superalloy. The deposited coating is usually overlaid with a thin layer of α-chromium, which must be removed chemically. Boriding, or Boronizing Boriding, or boronizing, is a thermochemical surface-hardening process that can be applied to a wide variety...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... Abstract This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... mixing Substrate treatment Diffusion methods: Carburizing Nitriding Carbonitriding Nitrocarburizing Boriding Titanium-carbon diffusion Toyota diffusion process Selective-hardening methods: Flame hardening Induction hardening Laser hardening...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002125
EISBN: 978-1-62708-188-7
..., but not exclusively, a ceramic is a metallic oxide, boride, or carbide, or a mixture or compound of such materials. By this definition of ceramics, the following materials theoretically fall into the group of cermets: WC + Co (Tungsten carbide + cobalt) WC/TiC/TaC + Co (Tungsten carbide/titanium carbide...
Abstract
Cermets are a group of powder metallurgy products consisting of ceramic particles bonded with a metal. This article describes the composition and microstructure of titanium carbide and titanium carbonitride cermets. It tabulates typical properties of titanium carbonitride cermets and compares the properties of cermets and cemented carbides. The article also summarizes the applications of cermet cutting tools.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
..., depends on the deposit matrix hardness as well as the type and quantity of hard constituents, such as carbides and borides, or phases, such as martensite or Laves phase intermetallics. Deposit hardness is also influenced by the degree of dilution from the base metal. For a specific base metal...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed. acid cleaning acid descaling alkaline cleaning boriding buffing carburizing electrocleaning...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006269
EISBN: 978-1-62708-169-6
... on the surface properties of titanium and two-phase α + β alloys. biocompatibility corrosion resistance fatigue gas nitriding kinetics nitriding plasma nitriding steel titanium alloys titanium product wear properties THERMOCHEMICAL SURFACE engineering plays a significant role in improving...
Abstract
This article describes the nitriding methods of titanium alloys such as plasma nitriding and gas nitriding. It focuses on the interaction of titanium alloys, interaction of titanium with nitrogen, and the interaction of titanium with oxygen, carbon, and hydrogen. The article provides information on the wear and fatigue properties and corrosion resistance of nitrided titanium alloys, as well as the effect of nitriding on the biocompatibility of titanium. It also compares plasma-nitrided titanium alloys with alloy steels. It concludes with a short discussion on the effect of nitriding on the surface properties of titanium and two-phase α + β alloys.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003826
EISBN: 978-1-62708-183-2
... additions of ferric ion ( Table 9 ). Corrosion of Hafnium Alloys Hafnium-Zirconium Alloys The hafnium-zirconium system is one of the few metallic systems in which thermochemical properties are almost ideal. That is, hafnium and zirconium can form isomorphous alloys for all ratios of the components...
Abstract
This article describes the processes involved in the production of hafnium and its alloys. It discusses the physical, mechanical and chemical properties of hafnium. The aqueous corrosion testing of hafnium and its alloys is detailed. The article reviews the corrosion resistance of hafnium in specific media, namely, water, steam, hydrochloric acid, nitric acid, sulfuric acid, alkalis, organics, molten metals, and gases. Forms of corrosion, namely, galvanic corrosion, crevice corrosion, and pitting corrosion are included. The article explains the corrosion of hafnium alloys such as hafnium-zirconium alloys and hafnium-tantalum alloys. It also deals with the applications of hafnium and its alloys in the nuclear and chemical industries.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005957
EISBN: 978-1-62708-166-5
Abstract
Furnaces are one of the most versatile types of industrial appliances that span many different areas of use. This article discusses the classification of various furnaces used in heat treating based on the mode of operation (batch-type furnaces and continuous-type furnaces), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic safety requirements of these furnaces.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
...) Phase equilibria diagrams and commentaries for ceramics and related materials National Institute of Standards and Technology, Ceramics Division, Gaithersburg, Maryland (a) Structural Ceramics Database Covers boride, carbide, nitride, oxynitride, and oxide ceramics. Includes material...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003762
EISBN: 978-1-62708-177-1
.... carbonitrided steel carburized steel case hardening steel etching grinding metallography microstructure mounting nitrided steel polishing sectioning specimen preparation DIFFUSION of alloying elements for surface hardening of steels includes various thermochemical treatments ( Table 1...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001089
EISBN: 978-1-62708-162-7
..., but they are important in: Certain thermochemical cycle calculations, in particular those that involve the heat of sublimation, that is, R (metal) → R (gas) at 298 K Physical processes that involve vaporization (see the section “Boiling Points and Sublimation Energies” in this article) Considering...
Abstract
Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. This article classifies the rare earth metals based on their purity level, which are designated as research grades (>99.8% pure) and commercial grades (95% - 98% pure), and describes the preparation and purification, including solid-state electrolysis. It further discusses physical, mechanical, and chemical properties; electronic configurations; crystal structures, and explains the alloy forming characteristics of rare earth elements. The article concludes by describing the various applications of commercial-grade rare earth elements and commercial alloys, which incorporates rare earth elements as additives.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005524
EISBN: 978-1-62708-197-9
... steels, the addition of boron leads to a fine distribution of M 23 C 6 and an increase in creep resistance. Thermodynamic calculations showed that boron will segregate to martensite lath boundaries and increase the driving force of boride precipitation. These precursor phases will act as us nucleation...
Abstract
This article provides an overview of integrated weld modeling and presents strategic goals for the welding industry. It discusses the fundamentals of the underlying physics and the methodologies to solve the same. The article presents the pioneering work done to predict the heat-affected zone and weld metal microstructure in the early 1980s and 1990s. Applications of computational thermodynamics and kinetics tools to weld metal microstructure prediction for liquid-gas reactions and liquid-slag reactions that happen as a function of high-to-low temperature during fusion welding are discussed. The article also includes a brief discussion on weldability prediction, residual stress prediction, and distortion prediction. It concludes with information on the use of optimization methodologies.
1