1-20 of 834

Search Results for thermal spray coatings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2006
Fig. 8 Scribed, sealed and painted thermal spray coatings on steel substrates compared to a scribed, painted steel panel after 42 months of severe marine atmospheric exposure. See the article “Corrosion of Metallic Coatings” in this Volume. More
Image
Published: 01 January 2006
Fig. 1 Percent of area corroded on single-element powder thermal spray coatings after 34 years of marine atmospheric exposure in the 250 m (800 ft) lot at Kure Beach, NC. Source: Ref 1 More
Image
Published: 01 January 2006
Fig. 3 Comparison of scribed, sealed, and painted thermal spray coatings on steel substrates to a scribed painted steel panel after 42 months of severe marine atmospheric exposure. (a) Flame-sprayed aluminum on steel, sealed/painted. (b) Painted steel panel (one coat MIL P24441 F150 primer More
Image
Published: 01 August 2013
Fig. 9 Comparison of thermal spray coatings deposited on macroroughened and smooth surfaces. (a) Sprayed metal over grooves; shrinkage constrained by grooves. (b) Sprayed metal on smooth surface; effect of shear stress on bond due to shrinkage. Adapted from Ref 3 More
Image
Published: 01 August 2013
Fig. 8 Comparison of thermal spray coatings deposited on macroroughened and smooth surfaces. (a) Sprayed metal over grooves; shrinkage constrained by grooves. (b) Sprayed metal on smooth surface; effect of shear stress on bond due to shrinkage. Adapted from Ref 2 More
Image
Published: 01 August 2013
Fig. 3 Examples of thermal spray coatings deposited on pulp and paper processing components. (a) Roll used in the paper industry being coated with tungsten carbide to provide a traction coating. (b) Suction roll that has been coated with tungsten carbide. Courtesy of ASB Industries More
Image
Published: 01 December 2004
Fig. 6 Proper sectioning of thermal spray coatings. (a) Sectioning of dense, nonfriable coatings. (b) Sectioning of porous, friable coatings. Source: Ref 9 More
Image
Published: 01 December 2004
Fig. 8 Proper encapsulation of thermal spray coatings. (a) Thermosetting encapsulation for dense, nonfriable coatings. Temperature: 140 °C (285 °F). Heat time: 4 to 6 min. Cool time: 2 min. (b) Room-temperature epoxy encapsulation with vacuum impregnation (25 in. mercury) for porous, friable More
Image
Published: 31 December 2017
Fig. 16 Comparison of wear behavior of different thermal-spray coatings and electroplated hard chromium coating; (FC = fine carbides; GC = large carbides). Source: Ref 17 More
Image
Published: 01 January 2003
Fig. 5 Peel-force measurements for thermal spray coatings applied to as-received (curve A) and environmentally exposed (curve B) polymeric coatings. Source: Ref 61 More
Image
Published: 01 January 2005
Fig. 5 Effects of sealing on the thickness changes of thermal spray coatings in the splash zone. (a) No sealing. (b) Sealed More
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
... Abstract This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
... Abstract This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine...
Book Chapter

By Marita L. Berndt, Christopher C. Berndt
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
... Abstract This article provides an overview of thermal spray processes. It describes the microstructural character of thermal spray coatings as well as the criteria for coating selection. The optimization, parameterization, and surface preparation and treatments for the thermal spray coatings...
Book Chapter

By Robert C. Tucker, Jr.
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... Abstract This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information...
Book Chapter

By Herbert Herman, Robert A. Sulit
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... Abstract Thermal spray coatings (TSCs) are surface coatings engineered to provide wear-, erosion-, abrasion-, and corrosion-resistant coatings for original equipment manufacture and for the repair and upgrading of in-service equipment. This article presents an overview of five thermal spray...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005736
EISBN: 978-1-62708-171-9
... Abstract Thermal spray processes involve complete or partial melting of a feedstock material in a high-temperature flame, and propelling and depositing the material as a coating on a substrate. This article describes the properties of sprayed electronic materials, including dielectrics...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006419
EISBN: 978-1-62708-192-4
... regarding the different forms of elementary movement in the corresponding tribological system. The article provides an overview of thermal spray coatings and possible uses for friction and wear control, besides operating as corrosion protection and a thermal barrier. The article provides examples...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003832
EISBN: 978-1-62708-183-2
... Abstract This article provides a general technical description of thermal spray coatings used for corrosion protection in atmospheric and aqueous environments. It further discusses two basic coating approaches of corrosion protection, namely, the sacrificial coating of thermal spray aluminum...
Image
Published: 01 August 2013
Fig. 2 Thermal spray coating. Buildup of a thermal spray coating is a chaotic process. Molten particles spread out and deform (splat) as they strike the substrate, at first keying onto asperities on the substrate surface, then interlocking to one another. Voids can occur if the growing deposit More