Skip Nav Destination
Close Modal
By
Philip J. Withers, Michael Preuss
By
Leijun Li, Chunbo (Sam) Zhang
By
David A. Prawel
By
Abbas Razavykia, Eugenio Brusa, Cristiana Delprete, Paolo Baldissera
By
K. Subramanian
Search Results for
thermal softening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 703
Search Results for thermal softening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Thermal Softening and Stress Relaxation in Copper
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
... Abstract Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures...
Abstract
Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures. This article is a collection of curves and tables that present data on thermal softening and stress-relaxation in copper and copper alloys. Thermal softening occurs over extended periods at temperatures lower than those inducing recrystallization in commercial heat treatments. Stress relaxation occurs because of the transformation of elastic strain in the material to plastic, or permanent strain.
Image
Schematics showing the effect of weld thermal cycles on the softening in th...
Available to PurchasePublished: 31 October 2011
Fig. 46 Schematics showing the effect of weld thermal cycles on the softening in the heat-affected zone (HAZ) in age-hardenable aluminum alloys. (a) Thermal cycles in the HAZ (for corresponding locations in the weld, see inset). (b) HAZ hardness profiles before and after aging. PWAA, postweld
More
Image
Schematic showing the effect of weld thermal cycles on the softening in the...
Available to PurchasePublished: 01 January 1993
Fig. 36 Schematic showing the effect of weld thermal cycles on the softening in the HAZ in age-hardenable aluminum alloys. (a) Thermal cycles in the HAZ (for corresponding locations in weld, see inset. (b) HAZ hardness profiles before and after aging. PWAA, postweld artificial aging. Source
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... resistance to abrasive wear. Air-Hardening Medium-Alloy Tool Steels (A2, A7, A8, A9) Manganese, chromium, molybdenum, and vanadium are the principal alloying elements in this group of tool steels. These steels have moderate resistance to thermal softening and, because of their high carbon content...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Book Chapter
Simulation of Rotational Welding Operations
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005515
EISBN: 978-1-62708-197-9
... Abstract Friction welding is based on the rapid introduction of heat, causing the temperature at the interface to rise sharply and leading to local softening. This article illustrates the basic principles of direct-drive rotational friction welding and inertia friction welding. Modeling...
Abstract
Friction welding is based on the rapid introduction of heat, causing the temperature at the interface to rise sharply and leading to local softening. This article illustrates the basic principles of direct-drive rotational friction welding and inertia friction welding. Modeling the effective friction response of the materials is central to simulating the welding process. The article discusses a series of distinct frictional stages during continuous drive friction welding. Modeling of the evolution of the thermal field has been an important objective since the early days of rotational friction welding. The article describes analytical thermal models and numerical thermal models for rotational friction welding. It concludes with information on the modeling of residual stresses.
Book Chapter
Annealing and Recrystallization of Coppers
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006278
EISBN: 978-1-62708-169-6
... than those inducing recrystallization in commercial heat treatments, thermal softening can occur over extended periods, and characteristics such as the half-softening temperature should be considered, that is, the temperature for which worked metal softens to half its original hardness after a specific...
Abstract
Cast and wrought coppers can be strengthened by cold working. This article provides information on minor alloying elements, such as beryllium, silicon, nickel, tin, zinc, and chromium, used to strengthen copper. It details annealing and recrystallization and grain growth characteristics of copper. The article also discusses the tensile-stress-relaxation behavior of selected types of copper wires.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006674
EISBN: 978-1-62708-213-6
... of Thermomechanical Analyzers ASTM E 228 Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer ASTM E 2347 Standard Test Method for Indentation Softening Temperature by Thermomechanical Analysis ASTM E 2769 Standard Test Method for Elastic Modulus...
Abstract
Thermomechanical analysis (TMA) is a thermal analysis technique in which the length of a specimen is precisely measured versus temperature and time as the specimen is subjected to controlled heating and cooling. This article discusses the various factors and processes involved in TMA. The discussion covers the general principles, equipment used, specimen preparation process, calibration conditions, data analysis steps, and examples of the applications and interpretation of TMA.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... − T amb ) ] m ) In the Johnson-Cook equation and its variants, strain hardening, strain-rate sensitivity, and thermal softening are treated in separate, independent terms. A represents the basic strength, and B and n the strain-hardening behavior. C represents rate...
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.
Image
Stiffness softening of poly(urea-urethane) nanohybrid elastomer (PUU-POSS) ...
Available to PurchasePublished: 12 September 2022
Fig. 30 Stiffness softening of poly(urea-urethane) nanohybrid elastomer (PUU-POSS) scaffolds under compression. (a) Optical images of surface and cross section of the scaffolds with infill densities 80–30% made by 3D, thermally induced phase separation. (b) Scanning electron microscope images
More
Book Chapter
Fundamentals of Ultrasonic Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005619
EISBN: 978-1-62708-174-0
... method from cyclic stress-strain data, thermal softening data, and acoustic (ultrasonic) softening data. The modified equations of isotropic and kinematic hardening are given by: (Eq 13) R ultrasonic = R th ⋅ ( 1 − d ⋅ E ultrasonic ) 2 (Eq 14) α...
Abstract
Ultrasonic welding (UW), as a solid-state joining process, uses an ultrasonic energy source and pressure to induce oscillating shears between the faying surfaces to produce metallurgical bonds between a wide range of metal sheets and wires. This article reviews the models of the ultrasonic welding with an emphasis on governing equations, material behavior, and heat generation of the process. It discusses the resulting factors, namely, vibration, friction, temperature, and plastic deformation as well as the bonding strength and its mechanism.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005790
EISBN: 978-1-62708-165-8
... of plain carbon, low-alloy and high-alloy steels and temperature-time relations of subcritical annealing. Practical implications for induction annealing and induction normalizing are included. The article concludes by describing induction softening, which softens the threaded area on carburized components...
Abstract
This article describes the metallurgy and process specifics of subcritical annealing, which involves heating below the lower critical temperature such that austenite does not form during subcritical annealing. It provides information on the nominal subcritical annealing temperatures of plain carbon, low-alloy and high-alloy steels and temperature-time relations of subcritical annealing. Practical implications for induction annealing and induction normalizing are included. The article concludes by describing induction softening, which softens the threaded area on carburized components such as hypoid pinion gears, to prevent the occurrence of delayed fractures from occurring.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... instantly affected by the stress and thermal conditions arising at the contact points due to sliding. The interfacial wear is defined as the removal of the material due to interfacial friction energy dissipation between asperities leading to events such as material softening, transfer wear, and chemical...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001381
EISBN: 978-1-62708-173-3
.... Fig. 3 Plot of welding parameters versus time for a direct-drive FRW system. Courtesy of D.L. Kuruzar, Manufacturing Technology, Inc. Friction torque remains somewhat constant in phase 2, indicating that the process reaches a balance of effects between strain hardening and thermal softening...
Abstract
Friction welding (FRW) can be divided into two major process variations: direct-drive or continuous-drive FRW and inertia-drive FRW. This article describes direct-drive FRW variables such as rotational speed, duration of rotation, and axial force and inertia-drive FRW variables such as flywheel mass, rotational speed, and axial force. It lists the advantages and limitations of FRW and provides a brief description on categories of applications of FRW such as batch and jobbing work and mass production. A table of process parameters of direct-drive FRW systems relative to inertia-drive FRW systems is also provided.
Book Chapter
Material Extrusion Additive Manufacturing Systems
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006580
EISBN: 978-1-62708-290-7
... be extruded at various levels of accuracy and speed. As the names imply, hot extrusion uses thermal energy to soften the material so that it can extruded. As the material softens, its viscosity decreases, enabling it to be pushed through the die at a given level of accuracy and speed. Cold extrusion does...
Abstract
Material extrusion systems are the most common types of additive manufacturing systems, also known as three-dimensional (3D) printers. This article focuses on the general 3D printing processes as can be demonstrated and manipulated in desktop printers. The discussion includes details of the components involved in material extrusion as well as the melt extrusion solidification (during cooling) process, the underlying mechanism of road bonding, and the factors affecting good part quality. The discussion also covers support material, postprocessing, and road-quality considerations and the addition of infill in melt extrusion to the hollow spaces inside an object to give it structural strength. Information is also provided on different materials and associated material properties that affect the rate the printer is able to advance and retract material, thereby affecting the quality and rate at which a part is printed. The final section provides information on the mechanism of viscous extrusion 3D printing.
Book Chapter
Wear Failure of Reinforced Polymers
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... ). At a certain speed, the critical temperature is reached at the contact points of sliding couples. This results in reduction of the friction coefficient due to localized surface melting and thermal softening, which encourage viscoelastic contact and adhesive wear of bearing bodies. The friction coefficient...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... and a transfer film is deposited onto the counterface. The molecular orientation in PTFE is responsible for the drop in the friction coefficient. Although the friction coefficient is low for PTFE, wear is generally high because of the thermal softening of the interface zone and easy removal of the material...
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
.... As a result, failure of some polymers under cyclic loading can be categorized first into thermal failure (unstable temperature rise in the material) and second into mechanical fatigue failure (crack initiation and growth in the absence of high temperature rise). Thermal failure involves thermal softening...
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
Book Chapter
Heat Treating of Copper and Copper Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
... or precipitates to increase strength and resistance to softening. High-copper alloys are unique in combining high strength with high thermal and electrical conductivity, two properties that are seldom found together in the same material. Typical applications for wrought high-copper alloys include electrical...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Book Chapter
Influence of Work Material Properties on Finishing Methods
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001241
EISBN: 978-1-62708-170-2
... sometimes observed on metals during grinding is rarely observed on ceramics. On the other hand, the hot hardness and recovery hardness of ceramics are much higher than those of metals, and the large-scale thermal softening that often aids in the grinding of metals can rarely be counted on in the grinding...
Abstract
This article focuses on the influence of various work material properties, namely, hardness; toughness; stiffness; ductility; thermal, electrical, and magnetic properties; and microstructure effects on finishing methods. It also addresses the relative response of work materials, such as metals, ceramics, and composites, to grinding.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... deformation and results in adiabatic heating of the particles at the interface. When the temperature is sufficiently high, thermal softening occurs and the interface can melt. The molten, viscous material flows, forming a material jet. When the material jet resolidifies, it forms a bond between the particles...
Abstract
The distinguishing feature of the cold spray process, when compared with the conventional thermal spray process, is its ability to produce coatings with high-velocity rather than high-temperature particle jet. This article provides an overview of the cold spray process and the parameters that affect both the process deposition efficiency and properties of the prepared coatings. It describes a variety of cold spray coating materials, namely, pure metals, ferrous and nonferrous metal alloys, composites, and cermets. The article presents various industrial applications of cold spray coatings.
1