Skip Nav Destination
Close Modal
By
Anil Chaudhary
By
Michael Kirka
By
Adrian Pierorazio, Nicholas E. Cherolis, Michael Lowak, Daniel J. Benac, Matthew T. Edel
By
Bruce Antolovich, Angelo Germidis, Paul Keefe, Michael Hill, Bruce Lindsley ...
By
Joseph R. Michael
By
Michael Sprayberry, Michael Kirka, Vincent Paquit
Search Results for
thermal mapping
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 467
Search Results for thermal mapping
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
... Abstract For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample...
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
Image
Three-dimensional map with coating thermal and elastic properties, in terms...
Available to PurchasePublished: 01 August 2013
Fig. 23 Three-dimensional map with coating thermal and elastic properties, in terms of thermal conductivity/elastic modulus/nonlinearity degree ( k - E -ND) relationships. Source: Ref 24
More
Book Chapter
Thermal Inspection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003239
EISBN: 978-1-62708-199-3
... distribution of heat during service. There are several methods of thermal inspection and many types of temperature-measuring devices and substances. This article, however, is limited mainly to the discussion of: Thermography, which is the mapping of isotherms, or contours of equal temperature, over...
Abstract
Thermal inspection comprises all methods in which heat-sensing devices or substances are used to detect irregular temperatures. Inspection of workpieces can be used to detect flaws and undesirable distribution of heat during service. Though there are several methods of thermal inspection and many types of temperature-measuring devices and substances, this article focuses only on thermography, which is the mapping of isotherms, or contours of equal temperature, over a test surface, and on thermometry, which is the measurement of temperature. Thermography techniques can be classified as contact thermographic methods using cholesteric liquid crystals, thermally quenched phosphors, and heat-sensitive paints, and noncontact techniques using hand-held infrared scanners, high-resolution infrared imaging systems, and thermal wave interferometer systems. Contact thermometric inspection devices include bolometers, thermocouples, thermopiles, and meltable substances, whereas radiometers and pyrometers come under the noncontact category.
Image
Digital composition map of a zinc-containing copper specimen. (a) Digital c...
Available to PurchasePublished: 01 January 1986
Fig. 13 Digital composition map of a zinc-containing copper specimen. (a) Digital compositional map of a portion of the grain boundary shown in Fig. 11 . Note the continuous gray scale presentation. The gray scale corresponds to a concentration scale of 0 to 10 wt% Zn. (b) Same data set
More
Image
Wear-mechanism map for unlubricated sliding of a steel couple. The normaliz...
Available to PurchasePublished: 01 January 2002
Fig. 2 Wear-mechanism map for unlubricated sliding of a steel couple. The normalized pressure is the contact pressure divided by hardness. The normalized velocity is the velocity multiplied by the ratio of the radius of the contact to the thermal diffusivity. The contour lines are lines
More
Image
Solidification parameters for IN-625 alloy produced by using laser-based di...
Available to PurchasePublished: 15 June 2020
Fig. 19 Solidification parameters for IN-625 alloy produced by using laser-based directed-energy deposition showing (a) thermal gradient ( G ) versus solidification rate ( R ) for depositions representing the four energy densities in Fig. 17 . Source: Ref 18 . (b) G and R values from
More
Book Chapter
Modeling of Laser-Additive Manufacturing Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
... and G values are obtained by postprocessing the thermal solution, which can be an analytical solution or a computational mechanics solution. The two parameters are related to microstructure by using processing maps. For example, see Ref 8 for a Ti-6Al-4V map. Because R and G are a function...
Abstract
Additive manufacturing produces a change in the shape of a substrate by adding material progressively. This article discusses the simulation of laser deposition and three principal thermomechanical phenomena during the laser deposition process: absorption of laser radiation; heat conduction, convection, and phase change; and elastic-plastic deformation. It provides a description of four sets of data used for modeling and simulation of additive manufacturing processes, namely, material constitutive data, solid model, initial and boundary conditions, and laser deposition process parameters. The article considers three aspects of simulation of additive manufacturing: simulation for initial selection of process parameter setup, simulation for in situ process control, and simulation for ex situ process optimization. It also presents some examples of computational mechanics solutions for automating various components of additive manufacturing simulation.
Book Chapter
Process-Structure Relationships in Fusion Metals Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006977
EISBN: 978-1-62708-439-0
... of steels ( Ref 5 ). In these process maps, normalized process parameters (i.e., thermal signatures) are related to resultant phase transformations, keyholing, and other phenomena that occur during the welding of steels. Such normalized processing maps have been adapted for laser powder-bed fusion, EBM...
Abstract
Additive manufacturing (AM) process modalities offer access to rich sets of structures for metallic materials that are otherwise difficult to obtain through a single conventional manufacturing process for bulk-scale materials. This article presents the primary aim of understanding the linkage between the process and structure in AM, which is typically focused on the correlation of machine process settings to defects such as material porosity and cracking. It also presents the development of scan strategies for site-specific microstructure control and discusses factors influencing process-structure relationships in fusion metals AM.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006396
EISBN: 978-1-62708-192-4
... from different Al/SiC p composites with nearly the same volume fraction of SiC particles (approximately 20%). This map shows that thermal effects play an increasingly important role in the wear behavior of this group of composites when the sliding speed exceeds approximately 3 m/s (10 ft/s). Fig...
Abstract
This article describes the usefulness of wear maps and explains how to construct a proper wear map from scratch and effectively employ such a map to make important design decisions for a particular tribological situation. It discusses three categories of wear-data presentation: numeric data, topographic data, and multidimensional graphical data. The article provides a brief description of the development of different groups of wear maps. It also summarizes the essential components of a wear map.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009013
EISBN: 978-1-62708-185-6
... during a thermomechanical process. The article provides information on the thermophysical properties, which include specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. It concludes with examples that illustrate how the various considerations in testing...
Abstract
Thermomechanical are used to gain insight into the causes of problems that arise during a given thermomechanical process. This article provides examples to demonstrate how significant the parameters were selected for specific tests. It examines the types of problems that can occur during a thermomechanical process. The article provides information on the thermophysical properties, which include specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. It concludes with examples that illustrate how the various considerations in testing are successfully used to solve practical thermomechanical processing problems.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001758
EISBN: 978-1-62708-178-8
... e − 2 π i ( h x + k y + l z ) Figure 9 shows a typical electron density map with contours at various levels of density to outline the atoms. The position of highest density is assumed to be the center of the atom and therefore the location of the nucleus. Thus...
Abstract
The primary goal of single-crystal x-ray diffraction is to determine crystal structure and the arrangement of atoms in a unit cell. This article discusses the diffraction of light through line gratings and explains the significance of crystal symmetry, space groups, and diffraction intensities. It also addresses phase and crystallographic analysis along with related challenges, and presents several application examples highlighting various experimental techniques.
Book Chapter
Assessment of Damage to Structures and Equipment Resulting from Explosion, Fire, and Heat Events
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... and point of origin. The temperature or blast pressure level can be mapped in both cases. The magnitude of a blast will usually be expressed in a spherical or circular map, whereas heat and fire damage zones are subject to flame impingement direction, wind direction, shadowing, insulation, and other cooling...
Abstract
This article addresses the effects of damage to equipment and structures due to explosions (blast), fire, and heat as well as the methodologies that are used by investigating teams to assess the damage and remaining life of the equipment. It discusses the steps involved in preliminary data collection and preparation. Before discussing the identification, evaluation, and use of explosion damage indicators, the article describes some of the more common events that are considered in incident investigations. The range of scenarios that can occur during explosions and the characteristics of each are also covered. In addition, the article primarily discusses level 1 and level 2 of fire and heat damage assessment and provides information on level 3 assessment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004151
EISBN: 978-1-62708-184-9
... and form an FeCl 3 -rich layer beneath the scale. During heatup, the FeCl 3 layer causes spalling of the protective Cr 2 O 3 -rich scale and a new outward-growing FeS-rich scale and inward-growing Cr 2 O 3 -rich scale is formed. This sequence repeats itself during each thermal cycle. Figure 7 shows...
Abstract
This article focuses on high-temperature corrosion in synthetic gas (syngas) coolers. Extensive laboratory corrosion studies on both model and commercial alloys are summarized. The article describes the material selection criteria for long-term performance of materials in service. It provides information on the fuels with chlorine contents used in gasification plants.
Book Chapter
7020 High-Strength Aerospace Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006729
EISBN: 978-1-62708-210-5
... at 20 °C (68 °F) 0.33 Elastic modulus at 20 °C (68 °F), GPa (× 10 6 psi) 72 (10) Density at 20 °C (68 °F), g/cm 3 (lb/in. 3 ) 2.78 (0.10) Melting range, °C (°F) 485–630 (905–1165) Thermal conductivity at 20 °C (68 °F), W/m · K 130–160 Electrical resistivity at 20 °C (68 °F), nΩ · m...
Abstract
Alloy 7020 is widely used in aerospace structures generally in the T651 temper to provide maximum strength. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Book Chapter
Introduction: Atlas of Fractographs
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... fracture morphologies by visual examination, light microscopy, or electron microscopy (particularly SEM), and to elucidate the benefits of fractography in determining the relationship of the mode of fracture to the microstructure, evaluating the responses of materials to mechanical, chemical, and thermal...
Abstract
This article provides an overview of how fractographs in this Atlas are organized and presented. It contains a table that lists the distribution content of illustrations for various materials discussed in the Atlas. The causes of fractures for various ferrous and nonferrous alloys and engineered materials are also illustrated.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
..., diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys. creep deformation...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Book Chapter
Practical Aspects of Converting Ingot to Billet
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003989
EISBN: 978-1-62708-185-6
... die. Transportation Equipment Transport of the ingot and semiproduct between the furnace and the press is a very important factor, due to its significant effects on the thermal history of the workpiece. Chargers are used to transport material to and from the press, and manipulators are used...
Abstract
This article describes the presses, transportation equipment, and manufacturing processes associated with cogging. It discusses the practical and metallurgical issues encountered during the conversion of ingot to billet. The article explains the use of numerical modeling as part of the continuing efforts to reduce the cost and time associated with developing new cogging sequences, increase the yield, make the processes more robust, and increase the quality of the produced product.
Book Chapter
Crystallographic Analysis by Electron Backscatter Diffraction in the Scanning Electron Microscope
Available to PurchaseSeries: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... material with grain size between 2 and 200 μm, EBSD can map a large number of grains over a range of length scales spanning nanometers to centimeters. Not only is the average texture of the material available directly, but local information is also available, such as grain size, grain shape...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Book Chapter
Process Optimization
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006994
EISBN: 978-1-62708-439-0
... of a suitable processing map for a given material is required. Over the past decade, efforts have been focused on processing regions that create near-zero defects in the components. To determine this processing region, key parameters with the highest influence are varied and the response to variation...
Abstract
Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. This article reviews data-driven optimization methods based on genetic algorithms and stochastic models and demonstrates their use in powder-bed fusion and directed energy deposition processes. In the latter case, closed-loop feedback is used to control melt pool temperature and cooling rate in order to achieve desired microstructure.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002477
EISBN: 978-1-62708-194-8
... behavior. A ductility ratio of 1.0 corresponds to a ductile failure, while ductility numbers less than 1.0 correspond to varying levels of brittle behavior. Ductility ratios can be plotted as a function of strain rate at different temperatures to create fracture maps such as the one shown for polycarbonate...
Abstract
The key to any successful part development is the proper choice of material, process, and design matched to the part performance requirements. Understanding the true effects of time, temperature, and rate of loading on material performance can make the difference between a successful application and catastrophic failure. This article provides examples of reliable material performance indicators and common practices to avoid failure. Simple tools and techniques for predicting part mechanical performance integrated with manufacturing concerns, such as flow length and cycle time, are demonstrated. The article describes the prediction of mechanical part performance for stiffness, strength/impact, creep/stress relaxation, and fatigue.
1