Skip Nav Destination
Close Modal
Search Results for
thermal expansion-thermal conductivity chart
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 209 Search Results for
thermal expansion-thermal conductivity chart
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... coefficient-modulus chart material property charts modulus-density chart modulus-strength chart normalized strength-thermal expansion chart specific stiffness-specific strength chart strength-density chart thermal conductivity-thermal diffusivity chart thermal expansion-modulus chart thermal...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001299
EISBN: 978-1-62708-170-2
.... In the case of TBCs on substrates, this is not a problem because the substrate side faces the laser. Thermal conductivity values in the literature have rarely been corrected for thermal expansion, because the expansion correction has been within the accuracies of steady-state determinations...
Abstract
This article discusses the various tests applied to a thermal barrier coating system and to the zirconia layer to establish thermomechanical, environmental stability, and thermal design properties such as coefficient of thermal expansion, specific heat, and thermal transport properties. Thermal fatigue testing and the test for evaluating oxidation resistance of the bond coat is also discussed.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
..., g/cm 3 Flexure strength, MPa (ksi) Fracture toughness, MPa m (ksi in. ) Hardness, GPa (10 6 psi) Elastic modulus, GPa Thermal conductivity, W/m · K (Btu/ft · h · °F) Linear coefficient of thermal expansion, ppm/°C (ppm/°F) Aluminum titanate 3.10 25 (3.6...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002450
EISBN: 978-1-62708-194-8
... to 5000 (725) Up to 350 (50) Young's modulus, GPa (10 6 psi) 15 to 400 (2 to 58) 150 to 450 (22 to 65) 0.001 to 10 (0.00015 to 1.45) High-temperature creep resistance Poor to medium Excellent … Thermal expansion Medium to high Low to medium Very high Thermal conductivity Medium...
Abstract
This article describes the process of materials selection in relation to the design process, such as materials selection for a new design and materials substitution for an existing design. It reviews the performance characteristics of materials using prototype tests or field tests to determine their performance under actual service conditions. The article describes the selection of a material in relation to the manufacturing process and presents the factors that influence materials selection based on costs and related aspects. These factors include metallurgical requirements, dimensions, processing, quantity, packing, marking, and loading. The article discusses how the needs for materials data evolve as a design proceeds from conceptual to detail design. It describes the methods of materials selection, namely, cost per unit property method, weighted property index method, and limits on properties method.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002489
EISBN: 978-1-62708-194-8
.... The relationship among design, material properties (yield strength at temperature, coefficient of expansion, thermal conductivity, etc.), and heating and cooling processes determine the distortion and residual stress patterns in heat treated components. Thermal and Transformation-Induced Strains in Heat Treated...
Abstract
This article presents an overview of the techniques used in the design for heat treatment and discusses the primary criteria for design: minimization of distortion and undesirable residual stresses. It provides theoretical and empirical guidelines to understand the sources of common heat treat defects. A simple example is presented to demonstrate how thermal and phase-transformation-induced strains cause dimensional changes and residual stresses. The article concludes with a discussion on the heat treatment process modeling technology.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003378
EISBN: 978-1-62708-195-5
.... It explains the development of the relations between mid-surface strains and curvatures and membrane stress and moment resultants. The article discusses the properties, such as thermal expansion, moisture expansion, and conductivity, of symmetric laminates and unsymmetric laminates. It describes...
Abstract
The properties of unidirectional composite (UDC) materials are quite different from those of conventional, metallic materials. This article provides information on the treatment of UDC stress-strain relations in the forms appropriate for analysis of thin plies of material. It explains the development of the relations between mid-surface strains and curvatures and membrane stress and moment resultants. The article discusses the properties, such as thermal expansion, moisture expansion, and conductivity, of symmetric laminates and unsymmetric laminates. It describes the distribution of temperature and moisture through the thickness of a laminate. Stresses caused due to mechanical loads, temperature, and moisture on the laminate are analyzed. The article concludes with information on interlaminar cracking, free-edge delamination, and transverse cracks of laminates.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001117
EISBN: 978-1-62708-162-7
... °C Coefficient of Linear Thermal Expansion 8 to 11 μm/m · K at 20 °C Specific Heat 0.207 kJ/kg · K at 25 °C Latent Heat of Fusion 163.17 kJ/kg Latent Heat of Vaporization 1602 kJ/kg Thermal Conductivity 25.9 W/m · K Electrical Properties Electrical Resistivity...
Abstract
This article presents the following characteristics of pure metals : structure, chemical composition, mass characteristics, thermal properties, electrical properties, chemical properties, magnetic properties, optical properties, fabrication characteristics, nuclear properties, and mechanical properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001333
EISBN: 978-1-62708-173-3
... comparisons with experimental measurements may not be feasible, unless some calibration through the experimental verification procedure is conducted. Welding Thermal Process A physical model of the welding system is shown in Fig. 1 . The welding heat source moves at a constant speed along a straight...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source cause physical state changes, metallurgical phase transformation, and transient thermal stress and metal movement. This article presents an analysis of heat flow in the fusion welding process. The primary objective of welding heat flow modeling is to provide a mathematical tool for thermal data analysis, design iterations, or the systematic investigation of the thermal characteristics of any welding parameters. The article addresses analytical heat-flow solutions and their practical applications. It describes the effects of material property and welding condition on the temperature distribution of weldments. The thermal properties of selected engineering materials are provided in a table.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005993
EISBN: 978-1-62708-166-5
... applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations. composite structures extended surfaces forced convection free convection heat conduction heat-transfer equations mixed convection thermal radiation HEAT TRANSFER is energy...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005588
EISBN: 978-1-62708-174-0
... a mathematical tool for thermal data analysis, design iterations, or the systematic investigation of the thermal characteristics of any welding parameters. Exact comparisons with experimental measurements may not be feasible, unless some calibration through the experimental verification procedure is conducted...
Abstract
The finished product, after fusion welding, may contain physical discontinuities due to excessively rapid solidification, adverse microstructures due to inappropriate cooling, or residual stress and distortion due to the existence of incompatible plastic strains. To analyze these problems, this article presents an analysis of the welding heat flow, with focus on the fusion welding process. It discusses the analytical heat-flow solutions and their practical applications. The article concludes with a description of the effects of material property and welding condition on the temperature distribution of weldments.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005449
EISBN: 978-1-62708-196-2
... transmission of heat or the protection of a construction most effectively against heat losses or gains. Three recognized modes of heat transfer are conduction, convection, and thermal radiation. They differ entirely in physical mechanism and governing laws. In conduction, heat flows from a high-temperature...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. It also demonstrates how to set up and solve real-world problems, while accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... for wire harness applications represent one common use. Bundles that have a cross-sectional area up to 30 mm 2 (0.05 in. 2 ) are readily weldable. The high thermal conductivity of copper is not the deterrent to ultrasonic welding that it is with fusion welding. Applications include: Stranded...
Abstract
Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels, high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.9781627081627
EISBN: 978-1-62708-162-7
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005604
EISBN: 978-1-62708-174-0
... in challenges for optical measurement of the lateral contraction of the specimen and leads to deviations in the monitored dilatometric curves. The thermal expansion experiments must be conducted with a variation of the t 8/5 time in order to monitor the phase transformation correctly and to obtain...
Abstract
This article focuses on the necessary basics for thermomechanical fusion welding simulations and provides an overview of the specific aspects to be considered for a simulation project. These aspects include the required material properties, experimental data needed for validation of the simulation results, simplifications and assumptions as a prerequisite for modeling, and thermomechanical simulation. The article concludes with information on the sensitivity of the material properties data with respect to the simulation results. It also provides hints on the central challenge of having the right material properties at hand for a specific simulation task.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
... the parts ( Ref 1 ): (Eq 4) q c → = − k ∇ → T where q c → is the heat flux, that is, the heat flow per unit surface area along the normal direction; k is the thermal conductivity of the material; and T is the temperature. The governing equation of transient...
Abstract
This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces and continuous furnaces. The heating methods, such as direct-fired heating, radiant-tube heating, and electrical heating, are also discussed. Furnace temperature control is essential to ensure quality heat treatment. The article explains the operating procedure of the automatic temperature controllers used in most furnace operations. Heating simulations can be validated by comparison with measured results in full-scale furnaces. The article also presents several case studies to illustrate the use of the simulations.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
.... Thermal expansion is relatively unaffected by beryllium content; thermal and electrical conductivities are reduced in proportion to the amount of alloying additions. Physical properties of beryllium-copper alloys Table 3 Physical properties of beryllium-copper alloys Tabulated properties apply...
Abstract
Addition of beryllium, up to about 2 wt″, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics, production steps and physical metallurgy of beryllium-copper, beryllium-nickel, and beryllium-aluminum alloy, and tabulates their mechanical, electrical and physical properties, and temper designations. It describes the important features of this alloy group, including information on safe handling. Additionally, the article presents examples of the beneficial properties of beryllium-copper alloys and quantifies some of the major reasons for their selection for particular applications.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005339
EISBN: 978-1-62708-187-0
... conductivity of the composite and the lower the coefficient of thermal expansion (CTE), the higher will be its resistance to mechanical and thermal distortion. Figure 15 shows the materials selection chart for resistance to mechanical and thermal distortions ( Ref 27 ). It is erved that the closer a material...
Abstract
Metal matrix composites (MMCs) can be synthesized by vapor phase, liquid phase, or solid phase processes. This article emphasizes the liquid phase processing where solid reinforcements are incorporated in the molten metal or alloy melt that is allowed to solidify to form a composite. It illustrates the three broad categories of MMCs depending on the aspect ratio of the reinforcing phase. The categories include continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. The article discusses the two main classes of solidification processing of composites, namely, stir casting and melt infiltration. It describes the effects of reinforcement present in the liquid alloy on solidification. The article examines the automotive, space, and electronic packaging applications of MMCs. It concludes with information on the development of select cast MMCs.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002453
EISBN: 978-1-62708-194-8
... heat flux per unit area; no failure under Δp λσ f Maximum heat flux per unit mass; no failure under Δp λσ f /ρ (a) λ = thermal conductivity; a = thermal diffusivity; C p = specific heat capacity; C m = material cost/kg; T max = maximum service temperature; α = thermal expansion...
Abstract
This article defines performance indices in a formal way and specifies how they are derived. The performance indices for a light, strong tie and a light, stiff beam are presented. The article presents two case studies that illustrate the use of material indices, shape factors, and selection charts to select materials.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005728
EISBN: 978-1-62708-171-9
...-temperature oxidation, wear, and corrosion. Additives to these powders have improved the phase stability and toughness of ceramic coatings. In general, ceramic coatings have lower heat conductivities than metallic coatings. Due to differences in thermal expansion coefficients with metals, ceramic coatings...
Abstract
Materials resulting from thermal spray processes are often different from their wrought, forged, and cast counterparts. Assessing the usefulness of thermal spray coatings requires understanding, developing, and using appropriate testing and characterization methods that are generally borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides information on how the materials themselves respond to the various test methods. The article focuses on the test methods themselves, including those test parameters that can be varied and the influence of each on the results obtained.