Skip Nav Destination
Close Modal
Search Results for
thermal expansion composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 319 Search Results for
thermal expansion composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
...-matrix composites Manufacturing type of defects In-service type of defects Density, fiber ratio, porosity, delaminations, contamination, interface quality, thermal cracking, fiber alignment, foreign inclusions, fiber cuts, bonding defects Impact damage, chemical/physical degradation, moisture...
Abstract
This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
...) Coefficient of linear thermal expansion (RT to 540 °C, or 1000 °F), ppm/°C 8.5 8.1 8.0 Hardness, HRC 34 40 44 RT, room temperature Magnesium-matrix composites are being developed to exploit essentially the same properties as those provided by aluminum MMCs: high stiffness, light weight...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
... fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that can occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling. The article...
Abstract
Tensile testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young’s modulus, and Poisson’s ratio relative to principal material directions, and helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that can occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling. The article also discusses the test methods of the four major types of mechanical testing of polymer-matrix composites: tensile, compression, flexural, and shear.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
..., including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding...
Abstract
The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the applications of adhesive bonding. It discusses the types of adhesives, namely, epoxy adhesives, epoxy-phenolic adhesives, condensation-reaction PI adhesives, addition-reaction PI adhesives, bismaleimide adhesives, and structural adhesives. The article provides information on fastener selection considerations, including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding, electromagnetic welding, and polymer-coated material welding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003159
EISBN: 978-1-62708-199-3
... and watches and for tuning forks used in radio synchronization. Other Fe-Ni-Cr alloys with 40 to 48% Ni and 2 to 8% Cr are useful as glass-sealing alloys. Replacement of some of the nickel by cobalt in an alloy of the Invar composition lowers the thermal expansion coefficient and makes the alloy's...
Abstract
Low-expansion alloys are materials with dimensions that do not change appreciably with temperature. Alloys included in this category are various binary iron-nickel alloys and several ternary alloys of iron combined with nickel-chromium, nickel-cobalt, or cobalt-chromium alloying. Low-expansion alloys are used in various applications such as rods and tapes for geodetic surveying, moving parts that require control of expansion (such as pistons for some internal-combustion engines), bimetal strip, components for electronic devices etc. This article discusses the properties, composition, and applications of iron-nickel low-expansion alloys (Invar), as well as other special alloys, including iron-nickel-chromium alloys, iron-nickel-cobalt alloys, iron-cobalt-chromium alloys, and high-strength, controlled-expansion alloys. It covers the factors affecting coefficient of thermal expansion of iron-nickel alloys, including heat treatment and cold drawing. Magnetic, physical, thermal, electrical and mechanical properties of iron-nickel alloys are also covered.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
...-performance carbon-carbon that used heat-stabilized polyacrylonitrile (PAN) or pitch-based fibers. These composites have higher strength, higher elastic moduli, and lower thermal expansion coefficients than the rayon-based materials. Applications have focused on using high-performance carbon-carbon in...
Abstract
Coating technology for carbon-carbon has been driven primarily by the aerospace and defense industries, in applications where the composite is exposed to high-temperature oxidizing environments. The most notable application of coated carbon-carbon is for the nose cap and wing leading edges of the Shuttle Orbiter vehicle. This article details the fundamentals of protecting carbon-carbon composites. It explains various coating deposition techniques: pack cementation, chemical vapor deposition, and slurry coatings. The article discusses typical coating architectures in accordance with the process used to deposit the primary oxygen barrier. It also provides information on the practical limitations of coatings for the composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... expansion of nearly zero in the plane ( Fig. 18 ). Fig. 18 Coefficient of thermal expansion, parallel and perpendicular to laminates of two-directional weave carbon-carbon composite with final heat treatment temperature (HTT) of 1200 and 2400 °C (2190 and 4350 °F) As noted above, composite...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... be stable during processing of the composite (an environment that may be as hostile as the service environment) and in the actual application. The coefficients of thermal expansion (CTEs) of the reinforcement and composite: If the CTEs are poorly matched, matrix cracking or separation of matrix...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005227
EISBN: 978-1-62708-187-0
... … Ultralight materials Magnesium/carbon fiber Tubular composites for space structures Zero thermal expansion, high-temperature strength, good specific strength and specific stiffness Aluminum/zircon, aluminum/SiC, aluminum/silica Cutting tools, machine shrouds, impellers Hard, abrasion-resistant...
Abstract
This article discusses the solidification of matrix alloy in cast metal matrix composites (MMCs). It begins with a discussion on the mixing techniques in reinforcement incorporation and wettability of reinforcement. It describes the solidification processes, such as stir mixing and melt infiltration, used in the synthesis of MMCs. The article also discusses the fundamentals of solidification process and presents a computational modeling of particle/solidification front interactions in metal-ceramic systems. The article concludes with information on nanocomposites.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005339
EISBN: 978-1-62708-187-0
... conductivity of the composite and the lower the coefficient of thermal expansion (CTE), the higher will be its resistance to mechanical and thermal distortion. Figure 15 shows the materials selection chart for resistance to mechanical and thermal distortions ( Ref 27 ). It is erved that the closer a material...
Abstract
Metal matrix composites (MMCs) can be synthesized by vapor phase, liquid phase, or solid phase processes. This article emphasizes the liquid-phase processing where solid reinforcements are incorporated in the molten metal or alloy melt that is allowed to solidify to form a composite. It illustrates the three broad categories of MMCs depending on the aspect ratio of the reinforcing phase. The categories include continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. The article discusses the two main classes of solidification processing of composites, namely, stir casting and melt infiltration. It describes the effects of reinforcement present in the liquid alloy on solidification. The article examines the automotive, space, and electronic packaging applications of MMCs. It concludes with information on development of select cast MMCs.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
...-grade MMCs is necessary to reduce the coefficient of thermal expansion to levels closer to that of electronic materials such as silicon and gallium arsenide. Fig. 2 Range in amount of reinforcement. (a) SiC P /6061-T6 Al metal-matrix composite (MMC) with 15 vol% reinforcement. (b) Si P /Al MMC...
Abstract
This article begins with the discussion on the background of metal-matrix composites (MMC) and moves into a broad description of the general parameters affecting the corrosion of MMC. It discusses the primary sources of MMC corrosion that include galvanic corrosion between MMC constituents, chemical degradation of interphases and reinforcements, microstructure-influenced corrosion, and processing-induced corrosion. The article elaborates on the corrosion behavior of specific aluminum, magnesium, titanium, copper, stainless steel, lead, depleted uranium, and zinc MMCs systems. It concludes with a description on the corrosion control of MMCs using protective coatings and inhibitors.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... steel. Heat sink properties of carbon-carbon composites designed for brakes, combined with dimensional stability, light weight, and friction characteristics, have resulted in their acceptance for high-performance aircraft and racing cars. Thermal expansion characteristics of composites can be...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003845
EISBN: 978-1-62708-183-2
... and silicon carbide, may be added to the corrosion barrier. These materials aid the resin laminate in resisting differential thermal expansion damage by rapidly transferring temperature changes throughout the laminate layers ( Ref 31 , 32 ). The materials are added in the range of 15 to 30 wt%, based...
Abstract
This article describes the resin and fabrication requirements associated with fiberglass-reinforced plastic equipment. It provides a discussion on various resins and their resistance to various environments. These include polyester, epoxy, epoxy vinyl-ester, and furan and phenolic thermosetting resins. The article concludes with a discussion on the curing system of the thermosetting resins with a wide variety of hardener types.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... thermal expansion. While the specific stiffness of magnesium is higher than that of aluminum, the stiffness (elastic modulus) is lower. The stiffness and thermal expansion of magnesium alloys can be improved by heat treatment but not to the desired level. Therefore, MgMCs have been developed and studied...
Abstract
Magnesium-matrix composites (MgMCs) are very promising as structural materials because of their low density, high specific strength, and excellent castability. This article provides information on the characteristics, mechanical properties, and applications of magnesium alloys and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment, precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004002
EISBN: 978-1-62708-185-6
... SiC particulate reinforced 2 xxx alloy having good stiffness and damage tolerance ( Ref 34 ). It is a replacement for a titanium part with a reduction in weight and production cost. Another application utilizing the ability to match coefficient of thermal expansion with mating materials was the use...
Abstract
Discontinuously reinforced aluminum (DRA) alloy metal-matrix composites (MMCs) represent an advanced aluminum materials concept whereby ceramic particles, or whiskers, are added to aluminum-base alloys through the use of either ingot-melting or casting and/or powder-metallurgy (P/M) techniques. This article begins with a summary of general observations on the forging of discontinuously reinforced composites. It provides information on some of the specific experimental results obtained on various DRA systems, including 2xxx DRA alloys and cast DRA alloys. The article reviews the efforts on the modeling of behavior of specific alloy systems, with a comparison of experimental results to the modeling attempts. It concludes with information on the properties of deformation-processed DRA alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... containing a Be-Be 2 C composite, from a fusion research project, over a 6 month period caused the mount to split apart from the volume expansion. The corrosion product was piled 12 mm (0.5 in.) high on the mount, illustrating the volume expansion of the corrosion product. The carbon typically present in...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses in-process problems and procedures with beryllium and aluminum-beryllium composites to prevent corrosion during processing, handling, and storage. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.9781627081955
EISBN: 978-1-62708-195-5
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003023
EISBN: 978-1-62708-200-6
... Abstract Thermal analysis provides a powerful tool for researchers and engineers in determining both unknown and reproducible behavioral properties of polymer molecules. This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition...
Abstract
Thermal analysis provides a powerful tool for researchers and engineers in determining both unknown and reproducible behavioral properties of polymer molecules. This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, conformation of the base polymers, processing of the base polymers with or without additives; and the response to chemical, physical, and mechanical stresses of base polymers as unfilled, shaped articles or as components of composite structures. It also describes thermal analysis techniques, including differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. This article also summarizes the basic thermal properties used in the application of engineering plastics, such as thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass transition temperatures. It concludes with a discussion of the thermal and related properties of nine thermostat resin systems divided into three groups by low, medium, and high service temperature capabilities.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
... coatings ( Ref 4 ). However, such techniques are not yet widely adopted in industrial use. Thermal expansion compatibility between coating and bond coat/substrate is essential in high-temperature applications. The spraying itself may result in compositional changes or create metastable phase structures...
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9