1-20 of 691 Search Results for

thermal embrittlement

Sort by
Image
Published: 01 January 1987
Fig. 100 Fracture in a thermally embrittled cobalt-free high-titanium maraging steel. (a) Secondary electron image of fracture surface. 1300 ×. (b) TEM extraction fractograph. 2150 ×. (c) Light micrograph of fracture edge, 260 ×. (d) Light micrograph of internal cracks, 260 ×. Light micrograph More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
... embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition, the article covers stress-corrosion cracking along with properties...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... cases of IG fracture are described as follows ( Ref 4 ): Precipitation of AlN phase on the prior-austenite grain boundaries when steel is slowly cooled after austentization at temperatures above 1300 °C (2370 °F), or slowly cooled after casting Thermal embrittlement of maraging steels...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... are described as ( Ref 4 ): Precipitation of AlN phase on the prior-austenite grain boundaries when steel is slowly cooled after austenitization at temperatures above 1300 °C (2370 °F), or slowly cooled after casting Thermal embrittlement of maraging steels by titanium carbonitrides Overheating...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002403
EISBN: 978-1-62708-193-1
... room-temperature mechanical properties and fatigue endurance limits of stainless steels. Stainless steels are susceptible to embrittlement during thermal treatment or elevated-temperature service. The article discusses embrittlement in terms of sensitization, 475 deg C embrittlement, and sigma-phase...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals. atomic structure brittle cracking crack propagation crystalline structure ductile cracking ductility environmentally induced...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003115
EISBN: 978-1-62708-199-3
... in the selection of stainless steel, namely corrosion resistance, fabrication characteristics, product forms, thermally induced embrittlement, mechanical properties in specific temperature ranges, and product cost. austenitic stainless steel chemical composition corrosion resistance duplex stainless steel...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001834
EISBN: 978-1-62708-181-8
... fractures, and high-temperature fractures. brittle fracture cold cracking deep-field microscopy ductile fracture embrittlement etching fatigue fracture fracture replica light microscopy macroscopic examination quality control taper sectioning visual inspection THE VISUAL EXAMINATION...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001036
EISBN: 978-1-62708-161-0
... by this recoil can cause the embrittlement observed in the HFIR ( Ref 24 ). Recoil from a reaction between a thermal neutron and boron to form an α-particle can also cause displacement damage. Damage from these transmutation reactions becomes important whenever the displacement-damage energy deposited...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
... into an organic uid, or gas molecules, atoms, or ions by a solid compound by substitution or addition. (2) A acid embrittlement. A form of hydrogen em- or liquid. Compare with absorption. re nery process for chemically combining is- brittlement that may be induced in some met- oparaf n with ole n hydrocarbons...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
..., and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
... and properties. Chemical changes that are due primarily to atmospheric contamination during heating and cooling and microstructural changes that are due to thermal cycling can result in grain growth, hardening, and embrittlement. Embrittlement can often be traced to recrystallization and oxygen ingression along...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during...