Skip Nav Destination
Close Modal
Search Results for
theoretical models
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 684 Search Results for
theoretical models
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 17 Results from theoretic modeling on protection distance (PD) and galvanic current as a function of surface activity of zinc. The length of the arrows in the figure illustrates qualitatively the possible variation of surface activity of these different materials that may be involved
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 21 Theoretical model versus XRD-generated experimental data plots of residual stress versus number of cycles. Source: Ref 43
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 21 Theoretical model versus x-ray-diffraction-generated experimental data plots of residual stress versus number of cycles. Source: Ref 53
More
Image
Published: 01 January 1989
Fig. 6(a) Theoretical surfaces produced in models of face milling with a sharp-nose milling tool (Type A), a round tool (Type B), and a round-nose tool (Type C). Source: Ref 5
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005581
EISBN: 978-1-62708-174-0
... Abstract Plastic deformation of one or both metals is required to obtain bonding in cold welding. This article presents a theoretical model, to explain the bond strength, based on metallographic studies and continuum mechanical analysis of the local plastic deformation in the weld interface...
Abstract
Plastic deformation of one or both metals is required to obtain bonding in cold welding. This article presents a theoretical model, to explain the bond strength, based on metallographic studies and continuum mechanical analysis of the local plastic deformation in the weld interface. It describes the bonding mechanisms, with illustrations. The article discusses the alternative methods of surface preparation and quality control of the weld interface of a cold weld. It concludes with a description of a variety of metal-forming processes suitable for production of cold welds, namely, rolling, indentation, butt welding, extrusion, and shear welding.
Image
Published: 31 August 2017
Fig. 10 True stress-strain curves for gray iron with coarse and fine flake graphite and different carbon equivalents (CE). Experimental data are compared to theoretical models of stress-strain behavior. (a) CE = 3.23 wt%. (b) CE = 3.55 wt%. (c) CE = 3.72 wt%. (d) CE = 4.32 wt%. Source: Ref 18
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... diameter was commonly used in early sintering studies for comparison with the predictions of theoretical models, but it is difficult or time-consuming to measure in practical systems. In research and development studies, the grain size should also be measured as a function of time or temperature...
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005789
EISBN: 978-1-62708-165-8
... the laboratory tests and characterization of industrial quenching processes. It reviews the importance of initial heat-flux density and first critical heat-flux density. The