Skip Nav Destination
Close Modal
Search Results for
theoretical fracture criteria
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 253 Search Results for
theoretical fracture criteria
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009004
EISBN: 978-1-62708-185-6
.... bulk forming process mechanical plasticity strain state stress state theoretical fracture criteria theoretical fracture models workability theory WORKABILITY, as described in previous articles, is not merely a property of a material but a characteristic of the material/process system...
Abstract
This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification scheme, including testing procedures and specific process measurements, that facilitate the application of workability concepts. Using examples, the article applies these concepts to forging, rolling, and extrusion processes. The stress and strain environments described in the article suggest that a workability test should be capable of subjecting the material to a variety of surface strain combinations. By providing insights on fracture criteria, these tests can be used as tools for troubleshooting fracture problems in existing processes, as well as in the process development for new product designs.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001348
EISBN: 978-1-62708-173-3
... geometries, as well as the effect of welding two dissimilar materials. Jensen ( Ref 76 ) demonstrates that shielding the full effect of mode II and III loading is important for interface cracks in brittle materials and that a proper interface fracture criteria needs to be modeled. He discusses a method...
Abstract
This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces based on theoretical analysis. A discussion on the properties affecting adhesion is also provided.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... that is played by the state of stress developed in the workpiece. Fig. 21 Influence of the stress state on the strain to fracture Yielding Criteria The ease with which a metal yields or flows plastically is an important factor in workability. If a metal can be deformed at low stress...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001347
EISBN: 978-1-62708-173-3
... in Layered Materials , Adv. in Appl. Mech. , Vol 28 , Hutchinson J.W. and Wu T.Y. , Ed., Academic Press , 1990 5. Jensen H.M. , Mixed Mode Interface Fracture Criteria , Acta Metall. Mater. , Vol 38 ( No. 12 ), 1990 , p 2637 – 2644 6. Brady R.L. , Porter R.S...
Abstract
Solid-state welding (SSW) processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metal being joined without the addition of brazing or solder filler metal. This article discusses the fundamentals of welding and joining materials via the application of a nonmelting process. The specific processes usually associated with the nonmelting process are discussed.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006352
EISBN: 978-1-62708-179-5
...%) KIc plain-strain fracture toughness, stress-intensity factor RAR relative abrasion resistance KId dynamic fracture toughness RE rare earth Kt theoretical stress concentration REE rare earth element DK stress-intensity factor range rpm revolutions per minute l length RSF roundness shape factor L liquid...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
... involved. It provides a schematic illustration of the arrangement used in the parallel gap explosive bonding process. The article discusses several important concepts pertaining to explosive parameters, hydrodynamic flow, jetting, and metal properties. It summarizes the criteria used to model the explosive...
Abstract
Explosion welding (EXW), also known as explosive bonding, is accomplished by a high-velocity oblique impact between two metals. This article describes the practice of producing an explosive bond/weld and draws on many previous research results in order to explain the mechanisms involved. It provides a schematic illustration of the arrangement used in the parallel gap explosive bonding process. The article discusses several important concepts pertaining to explosive parameters, hydrodynamic flow, jetting, and metal properties. It summarizes the criteria used to model the explosive bonding process. The article describes bond morphology in terms of wave formation, bond microstructure, and bond strength determination.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005461
EISBN: 978-1-62708-196-2
... hydrostatic pressures as a function of thickness. Nominal 27% reduction per pass with die half-angle of 25°. Source: Ref 17 Fracture Criteria The fracture models described previously, while providing useful insights, are approximate in their determination of the process or material conditions...
Abstract
This article discusses physical analysis, including slab method and upper-bound method and slip-line field analysis, for calculating stress states in plastic deformation processes. It presents various validation standards and models for evaluating the criterion of fracture for use in finite-element analyses of deformation processing. The article reviews the Cockcroft-Latham criterion of fracture and its reformulated extension for analysing the fracture locus for compression. It concludes with information on fundamental fracture models.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... Influence of the stress state on the strain to fracture, ε f Yielding Criteria The ease with which a metal yields plastically or flows is an important factor in workability. If a metal can be deformed at low stress, as in superplastic deformation, then the stress levels throughout the deforming...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... K 2 / π E ′ σ y Theoretically, fracture occurs when δ = δ c , the critical CTOD. In practice, a characteristic value for δ exists only for the crack initiation event; significantly more scatter exists for δ measured at maximum load or final fracture. The CTOD approach...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002387
EISBN: 978-1-62708-193-1
... criteria and definitions of high-temperature component creep life Table 1 Failure criteria and definitions of high-temperature component creep life History-based criteria 30 to 40 years have elapsed Statistics of prior failures indicate impending failure Frequency of repair renders...
Abstract
This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties and creepcrack growth. Practical methods based on replication and parametric approaches are also discussed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002390
EISBN: 978-1-62708-193-1
... be characterized in terms of fracture mechanic crack growth by the steady-state (large-scale crack growth regime) parameter C ∗ and the transient parameter C t . The parameter C t is theoretically equivalent to K (the crack-tip stress-intensity factor) under small-scale creep. It becomes C ∗ when...
Abstract
The approaches to spectrum life prediction in components can be classified into two types, namely, history-based methods, using the life-fraction rule or other damage rules, and postservice evaluation methods. This article discusses the variables affecting the material crack growth rate behavior and those essential elements in making spectrum crack growth life prediction. It provides information on life assessment for bulk creep damage.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
... as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture...
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002398
EISBN: 978-1-62708-193-1
... rate per unit crack extension, which is directly related to the stress intensity factor, K. Thus, linear-elastic fracture criteria based on K Ic , G Ic , or J Ic are identical. For mode I linear-elastic plane-strain conditions: (Eq 12) J Ic = G Ic = K Ic 2 / E...
Abstract
This article summarizes the general fatigue and fracture properties of cast steels, namely, toughness, fatigue, and component design factors such as section size and discontinuities. It describes the various factors that influence fatigue of cast steels. These factors include section size, defect size, stress modes, and waveform types. The article discusses various fracture mechanics in cast steels: cyclic stress-strain behavior and low- and high-cycle fatigue life behavior; plane-stress fracture toughness; plane-strain fracture toughness; constant-amplitude fatigue crack initiation and growth; and variable-amplitude fatigue crack initiation and growth.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... phenomenological and, as proposed, could be applied to either failure by yield or failure by fracture. They have also been applied to cyclic loading. In practice, the Tresca and von Mises criteria are most often used today (2020) to predict yield in isotropic constant-volume materials. The Rankine model...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005166
EISBN: 978-1-62708-186-3
... Abstract Flanging is a process used to form a projecting rim or edge on a part. This article explores how to determine aluminum flanging limits in terms of fracture, wrinkling, and springback, and their influencing material and process parameters with examples. flanging fracture...
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006076
EISBN: 978-1-62708-175-7
..., are discussed. The article also details several criteria used to evaluate the performance of an infiltration process. It concludes with information on alloy steels and fully infiltrated steels. alloy steel copper-infiltrated refractory metal copper-infiltrated steels infiltration methods refractory...
Abstract
The two most important classes of materials that are manufactured via infiltration methods are copper- and silver-infiltrated refractory metals and refractory carbides, and copper-infiltrated steels. This article focuses on copper-infiltrated steels and discusses the basic requirements for infiltration, which is a technique that is only applicable to material systems that meet certain requirements. It addresses these requirements and describes the conventional (partial) infiltration process of powder metallurgy (PM) steel. The materials used in the process, such as matrix and infiltrant, are discussed. The article also details several criteria used to evaluate the performance of an infiltration process. It concludes with information on alloy steels and fully infiltrated steels.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006085
EISBN: 978-1-62708-175-7
... and a correspondingly low density, for example, 35 to 50% of theoretical. However, these particles can be pressed into a partially consolidated billet shape with densities of 70 to 85% of theoretical. This form is referred to as a green compact, and it has sufficient green strength to endure handling. Where greater...
Abstract
This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes and the mechanics of extrusion. The article also examines specific extrusion practices for the production of wrought material from powder stock and provides examples of materials processed by powder extrusion.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... produced by either the NSA or PIA models. Numerous authors have discussed the stress distribution around cracks of various types under different loading conditions and proposed numerous criteria to describe impending fracture. Specifically, investigators such as Giovan and Sines ( Ref 23 ), Batdorf...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
... (or foil) metal coils. They are also used in the paper, plastic film, and even fabric manufacturing industries. From a mechanics point of view, in-plane shear or mode II fracture dominates processing in the first category, while the second group is predominantly governed by antiplane shear or mode III...
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
1