Skip Nav Destination
Close Modal
Search Results for
test specimen design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1422
Search Results for test specimen design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 February 2024
Image
Published: 01 January 1996
Image
in Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes
> Metals Process Simulation
Published: 01 November 2010
Fig. 5 Typical specimen designs for the compression testing of cylinders. (a) Sample with spiral grooves. (b) Rastegaev specimen. Source: Ref 4
More
Image
Published: 01 January 2000
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003444
EISBN: 978-1-62708-195-5
... TEST SPECIMENS designed to characterize composite material behavior for failure modes not addressed in flat coupon specimens are known as elements (for smaller, more standard specimen configurations) and subcomponents (for nonstandard and typically larger specimens). Materials data can be used...
Abstract
This article explores why structural element and subcomponent testing are conducted. It discusses the different types of failure modes in composites, and provides information on the testing methodology, fixturing, instrumentation, and data reporting. The article reviews various standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation are reviewed with analytical predictions. The article also provides a list of the ASTM testing standards applicable at the element level of testing for both polymer-matrix composites and metal-matrix composites. It concludes with a discussion on durability and damage tolerance testing.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003640
EISBN: 978-1-62708-182-5
..., metal composition and metallurgical conditions, test specimen preparation, and corrosion damage assessment. It describes a strategy for planning the design of controlled and uncontrolled factorial experiments. The article contains a table that lists the elements of an iterative process...
Abstract
When planning a corrosion-testing program, it is advisable to select the testing conditions carefully in order to produce ranking parameters with minimal influence from testing conditions while rich in engineering significance. This article provides a discussion on test objectives, metal composition and metallurgical conditions, test specimen preparation, and corrosion damage assessment. It describes a strategy for planning the design of controlled and uncontrolled factorial experiments. The article contains a table that lists the elements of an iterative process for the experimental design. It illustrates the experimental designs applied to corrosion testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
... and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental...
Abstract
Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides a discussion on the operational principle of the traditional SHPB technique and the relevant assumptions in the derivation of the stress-strain relationship. It describes the inherent limitations on the validity of these assumptions in testing ceramics and discusses the necessary modifications in SHPB design and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental results obtained from SHPB testing of ceramics, and effectiveness of the proposed modifications.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003315
EISBN: 978-1-62708-176-4
... Abstract This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect...
Abstract
This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect to strain-rate-dependent material behavior. The article also provides information on the applications of the ultrasonic fatigue test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... Abstract This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial...
Abstract
This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial fatigue testing machines and bending fatigue machines. Load cells, grips and alignment devices, extensometry and strain measuring devices, environmental chambers, graphic recorders, furnaces, and heating systems of ancillary equipment are discussed. The article presents technologies available to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue interaction, and thermomechanical fatigue. The effects of various variables on fatigue resistance and guidelines for fatigue testing are also presented.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003267
EISBN: 978-1-62708-176-4
... of brittle materials Easy sample installation Inexpensive sample cost Disadvantages Sensitive to specimen design End effects (friction/constraint) Difficult to test brittle materials and composites where machining reduced section is not plausible Sensitive to alignment Not always good...
Abstract
This article provides a discussion on the mechanical properties of metals, ceramics, and polymers and fiber-reinforced polymer composites at low temperatures. It reviews the factors to be considered in tensile and compression testing of these materials. The article details the equipment used for low-temperature tensile and compression tests with illustrations. It concludes with a discussion on the various test methods and their ASTM standard for compression and tension testing.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003439
EISBN: 978-1-62708-195-5
... failure, which lowers the mean and increases scatter in the data. Careful attention to both test specimen design and testing practices are often required to overcome this problem. While the example mentioned previously is a mechanical test, similar difficulties can be experienced when testing other...
Abstract
Composites are complex engineered materials that often behave differently than common isotropic materials. Before testing a composite material, or before ordering or supervising such testing, the responsible party should review certain considerations. This article provides an overview of such considerations, namely, the differences between the testing of composites and testing of isotropic materials, role of certification agencies and importance of their involvement, building-block approach to composites testing, determining the purpose of testing, normalizing results, and statistical data reduction.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
.... The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity...
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
... Abstract This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance...
Abstract
This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance test for the specification of materials. The article presents mathematical expressions for a flow curve of many metals in the region of uniform plastic deformation. It explains that the rate at which strain is applied to the tension specimen has an important influence on the stress-strain curve. The point of necking at maximum load can be obtained from the true stress-true strain curve by finding the point on the curve having a subtangent of unity. The article concludes with an overview of the ductility measurements performed by notch tensile and compression tests.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... are evaluated by a number of specially designed test methods. These test methods are mechanically simple in concept but extremely sensitive to specimen preparation and test-execution procedures, often requiring complex data reduction analysis. The rigor of specimen fabrication and testing practices employed...
Abstract
This article begins with a review of the purposes of mechanical characterization tests and the general considerations related to the mechanical properties of anisotropic systems, specimen fabrication, equipment and fixturing, environmental conditioning, and analysis of test results. It provides information on the specimen preparation, instrumentation, and procedures for various mechanical test methods of fiber-reinforced composites. These include the compression test, flexure test, shear test, open hole tension test, and compression after impact test. The article describes three distinct fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article concludes with a discussion on the split-Hopkinson pressure bar test.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003651
EISBN: 978-1-62708-182-5
... Abstract This article describes the test methods for evaluating the durability of a metal in soil. It provides useful information on soil characteristics such as soil electrical resistivity, pH value, and soil texture. Specimen design, preparation, burial, and retrieval techniques are discussed...
Abstract
This article describes the test methods for evaluating the durability of a metal in soil. It provides useful information on soil characteristics such as soil electrical resistivity, pH value, and soil texture. Specimen design, preparation, burial, and retrieval techniques are discussed. The type of information sought during soil-induced corrosion evaluation controls the design configuration and the nature of the corrosion measurements. Consideration of these factors during the planning stage helps the corrosion engineer to obtain the maximum amount of information with the minimum number of problems.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
..., an electric furnace with suitable temperature control, and an extensometer. Equipment discussed in this section is for uniaxially loaded specimens in tension. More information on creep and stress-rupture testing equipment and methods can be found in the following standard: Designation Title ASTM E...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003391
EISBN: 978-1-62708-195-5
... useful in comparing progressive damage-analysis predictions using finite-element and cubic-spline techniques, as shown in Fig. 3 . Bolted Joints Depending on the type of specimens, bolted joint tests can be conducted at either the design allowables level (for generation of design data...
Abstract
Detailed analyses and test correlations are typically required to support design development, structural sizing, and certification. This article addresses issues concerning building block levels ranging from design-allowables coupons up through subcomponents, as these levels exhibit a wide variety of test-analysis correlation objectives. At these levels, enhanced analysis capability can be used most effectively in minimizing test complexity and cost while also reducing design weight and risk. The article discusses the examples of tests for which good correlative capability has shown significant benefit. These include notched (open and/or filled hole) tension and compression, inter/intralaminar shear and tension, and pin bearing.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
... properties compressive properties creep properties creep-rupture properties elastic limits elastic moduli fabrication fatigue properties fracture properties materials selection proportional limits sample testing shear properties stress-strain curves tensile properties test specimen design...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
... Toughness Fracture toughness is highly dependent on many variables, many of which can dramatically alter the fracture resistance characteristics of a structure, mechanical component, or test specimen. During analysis and design, consideration of yield strength, loading rate, temperature, thickness...
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
1