Skip Nav Destination
Close Modal
Search Results for
test bars
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 405 Search Results for
test bars
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003107
EISBN: 978-1-62708-199-3
... Abstract This article provides information on the classification, microstructure, castability and section sensitivity of gray iron. It describes properties of the test bar and provides a short note on fatigue limit in reversed bending. Although the ASTM size B test bar is the bar most commonly...
Abstract
This article provides information on the classification, microstructure, castability and section sensitivity of gray iron. It describes properties of the test bar and provides a short note on fatigue limit in reversed bending. Although the ASTM size B test bar is the bar most commonly used for all gray irons from classes 20 to 60, ASTM A 48 provides a series of bar sizes, and the user can select the bar sizes that best approximates the cooling rate in the critical section of the casting.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
... required, or when the shape of the bar or part makes machine straightening impractical, time-tested manual straightening is still used. The tools used in manual straightening include hammers and mallets, anvils, surface tables, vises, levers, grooved blocks ( Fig. 14 a), grooved rolls, twisting devices...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61. alloy 201.0 alloy 354.0-T61 alloy A356.0-T61 alloy C355.0-T61 aluminum...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005323
EISBN: 978-1-62708-187-0
... properties and specifications of test bar. It discusses the properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature. Wear behavior of gray iron castings during sliding contact under conditions of...
Abstract
This article begins with an overview of classes and applications of gray iron. It discusses the castability of gray iron in terms of section sensitivity and fluidity. The article provides information on the dimensions of prevailing sections recommended for gray irons and reviews the properties and specifications of test bar. It discusses the properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature. Wear behavior of gray iron castings during sliding contact under conditions of normal lubrication is also discussed. The article reviews the use of alloys and heat treatment to modify as-cast properties. It concludes with information on physical properties of gray iron castings.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006467
EISBN: 978-1-62708-190-0
... permeability Both systems are capable of detecting flaws in ferromagnetic bars. The conductivity-dependent systems can also be used to detect flaws in nonferromagnetic bars. When electrical conductivity (resistivity) is the major variable relied upon, the test procedure is known as the eddy-current...
Abstract
This article focuses on nondestructive inspection of steel bars. The primary objective in the nondestructive inspection of steel bars and wire is to detect conditions in the material that may be detrimental to the satisfactory end use of the product. The article discusses various types of flaws encountered in the inspection of steel bars, including porosity, inclusions, scabs, cracks, seams, and laps. Inspection methods, such as magnetic-particle inspection. liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection, of steel bars are also described. The article provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003095
EISBN: 978-1-62708-199-3
... inches or millimeters with applicable tolerances, as shown in ASTM specifications A 6 and A 29. Hot-rolled steel bars and shapes can be produced to chemical composition ranges or limits, mechanical property requirements, or both. The mechanical testing of hot-rolled steel bars and shapes can...
Abstract
Hot-rolled steel bars and other hot rolled steel shapes are produced from ingots, blooms, or billets converted from ingots, or from strand cast blooms and billets, and comprise a variety of sizes and cross sections. This article provides a brief discussion on mechanical properties, quality descriptors and chemical compositions of hot-rolled steel bars, cold-finished steel bars, steel wire rod and steel wire. It contains tables that provide size tolerances for cold-finished carbon steel bar and cold-finished alloy steel bar.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... magnification: 59× Tensile specimens from both halves exhibited ultimate tensile strengths exceeding 205 MPa (30 ksi). Although testing of samples removed from a cast component may not necessarily bear relation to grade/condition determination based on separately poured test bars, results suggested the...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... economy are well documented. For example, the importance of investigating failures was vividly illustrated in the pioneering efforts of the Wright Brothers in developing self-propelled flight. In fact, while Wilbur was traveling in France in 1908, Orville was conducting flight tests for the U.S. Army...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004009
EISBN: 978-1-62708-185-6
... simulation steps as displayed by ROLPAS for a test airfoil shape cold rolled from rectangular steel stock To simulate the rolling process, ROLPAS divides the deformation zone into a number of cross sections parallel to the roll axis ( Fig. 7 , 15 ). The simulation is initiated by considering the cross...
Abstract
The primary objectives of the rolling process are to reduce the cross section of the incoming material while improving its properties and to obtain the desired section at the exit from the rolls. This article illustrates a rolling sequence for the fabrication of bars, shapes, and flat products from blooms, billets, and slabs. It describes two methods for shapes or sections: universal rolling and caliber rolling. The article provides information on two-high mills and three-high mills. Specialty mills for thin sheets, namely, the Sendzimir mill and planetary mill, are discussed. The article analyzes the components of a computer controlled system for high-speed mills. Steels and nonferrous materials are also discussed. The article concludes with information on the defects in flat, bar, or shaped products due to heating and rolling practices.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... may use exemplar test bars fabricated at the same time. Raw materials specification for castings may require separately cast bars, “hang-on” bars, or bars cut from a section of the casting. Each test bar will produce mechanical properties that can be correlated to the actual casting based on...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... specimens can be used. The principal advantage of this standardized test is that the susceptibility to hydrogen stress cracking for a particular metal-environment combination can be assessed rapidly. A variety of specimen shapes and sizes can be used; the most common is a smooth bar tensile coupon, as...
Abstract
Stress-corrosion cracking (SCC) occurs under service conditions, which can result, often without any prior warning, in catastrophic failure. Hydrogen embrittlement is distinguished from stress-corrosion cracking generally by the interactions of the specimens with applied currents. To determine the susceptibility of alloys to SCC and hydrogen embrittlement, several types of testing are available. This article describes the constant extension testing, constant load testing, constant strain-rate testing for smooth specimens and precracked or notched specimens of SCC. It provides information on the cantilever beam test, wedge-opening load test, contoured double-cantilever beam test, three-point and four-point bend tests, rising step-load test, disk-pressure test, slow strain-rate tensile test, and potentiostatic slow strain-rate tensile test for hydrogen embrittlement.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... result of bulging of the free edges of the bars during rolling. Thus, it should be possible to predict fracture in bar rolling from compression tests used to develop the fracture limit curve. Figure 23 shows the sequence of passes required to roll a round bar. To determine the strains developed on the...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... Abstract Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... “correct” property value. It is now becoming recognized that certain tests (e.g., bend bar modulus of rupture tests, which are used to determine strength of ceramic materials) are not adequate for design purposes. In the area of mechanical property testing of ceramic materials, it does not seem possible at...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... Abstract This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot...
Abstract
This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot-tension test data, which helps to gain information on a number of material parameters and material coefficients. It details the effect of test conditions on flow behavior. The article briefly describes the detailed interpretation of data from the isothermal hot-tension test using numerical model. It also explains the cavitation mechanism and failure modes that occur during hot-tension testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... mechanical properties of engineering plastics. The testing methods for determining mechanical properties, including stress-strain test, modulus-directed tensile test, strength test, strength-directed tensile test, impact test, and dynamic mechanical test are discussed. crystallinity engineering...
Abstract
Mechanical properties are often the most important properties in the design and selection of engineering plastics. Temperature, molecular structure, crystallinity, viscoelasticity, and effects of environment, fillers and reinforcements are considered as the basic factors affecting the mechanical properties of engineering plastics. The testing methods for determining mechanical properties, including stress-strain test, modulus-directed tensile test, strength test, strength-directed tensile test, impact test, and dynamic mechanical test are discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003126
EISBN: 978-1-62708-199-3
... an elongation of approximately 1 1 2 % in 250 mm (10 in.). (f) Tempers T361 and T861 were formerly designated T36 and T86, respectively. (g) Based on 10 7 cycles using flexural type testing of sheet specimens. (h) T7451, although not previously registered, has appeared in...
Abstract
This article is a comprehensive collection of property data for wrought aluminum and aluminum alloys. Data are provided for the physical properties and mechanical properties of wrought aluminum and aluminum alloys. The listing also includes values that indicate the effect of temperatures on tensile strength, yield strength, and elongation, and the mechanical properly limits for aluminum alloy die forgings, non-heat-treatable and heat-treatable aluminum alloy sheets and plates, and non-heat-treatable aluminum alloy extruded wires, rods, bars, and shapes.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006468
EISBN: 978-1-62708-190-0
... materials. It depends on the fact that when the material or part under test is magnetized, magnetic discontinuities that lie in a direction generally transverse to the direction of the magnetic field will cause a leakage field to be formed at and above the surface of the part. The presence of this leakage...
Abstract
Magnetic-particle inspection is a method of locating surface and subsurface discontinuities in ferromagnetic materials. This article discusses the applications and advantages and limitations of magnetic-particle inspection. It describes magnetic fields in terms of magnetized ring, magnetized bar, circular magnetization, longitudinal magnetization, and effects of flux direction. General applications, advantages, and limitations of the various magnetizing methods used in magnetic-particle inspection are listed in a table. The article discusses the items that must be considered in establishing a set of procedures for the magnetic-particle inspection of a specific part: type of current, type of magnetic particles, method of magnetization, direction of magnetization, magnitude of applied current, and equipment. It concludes with a discussion on demagnetization after magnetic-particle inspection.