Skip Nav Destination
Close Modal
Search Results for
tensile adhesion testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 639 Search Results for
tensile adhesion testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 2 Coating/fixture assembly used for tensile adhesion testing of thermal spray coatings. Dimensions are in inches (1 in. = 25.4 mm). Source: ASTM C633
More
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 01 August 2013
Fig. 3 Nickel-chromium-aluminum coating used to study the tensile adhesion test as listed in Table 1
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005730
EISBN: 978-1-62708-171-9
... Abstract This article describes the two commonly used standardized tests for determining the mechanical properties of thermal spray coatings: hardness testing and tensile adhesion testing. It discusses the destructive and non-destructive methods of residual-stress measurement. Electrochemical...
Abstract
This article describes the two commonly used standardized tests for determining the mechanical properties of thermal spray coatings: hardness testing and tensile adhesion testing. It discusses the destructive and non-destructive methods of residual-stress measurement. Electrochemical testing methodologies include two distinctly different methods: direct and alternating current impedance techniques for assessing the corrosion resistance of coating attributes. The article also reviews the testing methods for determining thermomechanical and environmental stability of thermal barrier coatings. It discusses the wear testing methodologies that are standardized by ASTM, including the pin-on-disk, block-on-ring, dry sand/rubber wheel, erosion, metallographic apparatus abrasion, fretting wear, cavitation, reciprocating ball-on-flat, impact, and rolling contact fatigue test. The article concludes with a discussion on the methods of testing abradability and erosion resistance in abradable coatings.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005728
EISBN: 978-1-62708-171-9
... borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides...
Abstract
Materials resulting from thermal spray processes are often different from their wrought, forged, and cast counterparts. Assessing the usefulness of thermal spray coatings requires understanding, developing, and using appropriate testing and characterization methods that are generally borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides information on how the materials themselves respond to the various test methods. The article focuses on the test methods themselves, including those test parameters that can be varied and the influence of each on the results obtained.
Image
Published: 01 January 2000
Fig. 5 Typical specimen geometries for testing the tensile strength of adhesive joints. Source: Ref 7
More
Image
Published: 01 January 2001
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003324
EISBN: 978-1-62708-176-4
... in the measurement of adhesive joint strength. These include qualitative tests, peel tests, lap shear tests, tensile tests, and adhesive fracture mechanics tests. adhesive fracture adhesive joints lap shear test mechanical strength peel test qualitative test tensile test MOST ENGINEERING DESIGNS...
Abstract
Adhesive joints involve joining parts by bonding component parts together with an adhesive. This article provides a discussion on the purpose of testing adhesive joints and on the factors influencing mechanical strength of these joints. It describes the various tests used in the measurement of adhesive joint strength. These include qualitative tests, peel tests, lap shear tests, tensile tests, and adhesive fracture mechanics tests.