1-20 of 2504 Search Results for

tempering

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005873
EISBN: 978-1-62708-167-2
... Abstract Tempering of induction-hardened steel is a form of subcritical heat treatment, primarily carried out to increase ductility, toughness, and dimensional stability, to relieve residual stresses, and to obtain specific values of mechanical properties. This article describes tempering...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005815
EISBN: 978-1-62708-165-8
... Abstract Tempering of steel is a process in which hardened or normalized steel is heated to a temperature below the lower critical temperature and cooled at a suitable rate, primarily to increase ductility, toughness, and grain size of the matrix. This article provides an overview...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005997
EISBN: 978-1-62708-168-9
... Abstract Steel, heated in contact with air at temperatures in the tempering range, takes on various temper colors due to the formation of a thin oxide film. This article provides detailed information on temper colors for plain carbon steel, especially on the effects of time and temperature...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems. cast aluminum alloys temper designations wrought aluminum alloys mechanical properties THE MOST WIDELY ACCEPTED alloy and temper designation...
Image
Published: 01 August 2013
Fig. 5 Tempering stages and effect of tempering temperature on hardness of plain carbon steels. Adapted from Ref 10 More
Image
Published: 01 August 2013
Fig. 21 Tempering curves for H13 tool steel. (a) Plotted at various tempering times. (b) Parametric plot with P = T [16.44 + log ( t )], where T is absolute temperature in degrees Kelvin (K), and t is time in seconds. Source: Ref 26 More
Image
Published: 01 December 1998
Fig. 4 Vickers hardness (10 kg load) versus tempering time at several tempering temperatures for (a) an alloy with 3.61% C, 3.11% Si, 0.04% Mo and (b) an alloy with 3.64% C, 2.57% Si, 0.49% Mo. More
Image
Published: 01 October 2014
Fig. 16 Effect of tempering temperature (three tempering cycles at 2 h each) on hardness and retained austenite for M50 austenitized at 1095 °C (2000 °F). Reprinted with permission from SAE International. Source: Ref 10 More
Image
Published: 01 October 2014
Fig. 17 Effect of tempering temperature (three tempering cycles at each different temperature) on the size change of M50 aged at room temperature. Reprinted with permission from SAE International. Source: Ref 10 More
Image
Published: 01 October 2014
Fig. 1 Tempering curves for the most common hot-work tool steels. Tempering curves are obtained after hardening small (25 mm or 1 in.) specimens of all materials with the usual hardening temperature: 1020 °C for H13, TENAX300 (brand name of low-silicon H11), and VHSUPER (brand name of high More
Image
Published: 01 October 2014
Fig. 16 Vickers hardness (10 kg load) versus tempering time at several tempering temperatures for (a) an alloy with 3.61% C, 3.11% Si, 0.04% Mo and (b) an alloy with 3.64% C, 2.57% Si, 0.49% Mo. Source: Ref 18 More
Image
Published: 31 August 2017
Fig. 16 Vickers hardness (10 kg load) versus tempering time at several tempering temperatures for (a) an alloy with 3.61% C, 3.11% Si, 0.04% Mo and (b) an alloy with 3.64% C, 2.57% Si, 0.49% Mo. Source: Ref 19 More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006531
EISBN: 978-1-62708-207-5
... Abstract This article presents a summary of aluminum temper designations, and applicable aluminum alloys and product forms for temper designations used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107). aluminum alloys aluminum temper designations...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005936
EISBN: 978-1-62708-166-5
... tempering of steel components in order to optimize tribological properties. It focuses on the heat treatment of tempering and bearing steels and on volume changes that take place due to phase transformations. Plastic deformations that occur due to shrinking and phase transformation are also discussed...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... Abstract This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006622
EISBN: 978-1-62708-210-5
... Abstract This article lists temper designations and their definitions for aluminum alloys along with their product forms used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107). aluminum alloys temper designations Temper designations and definitions...
Image
Published: 01 January 2002
Fig. 14 Isothermal diagram showing the sequence of carbide formation on tempering of normalized 2 1 4 Cr-1Mo steel. Source: Ref 12 More
Image
Published: 01 January 2002
Fig. 17 Stress distribution in a cylinder after tempering. (a) t = 2 h. (b) Assume t = ∞. More
Image
Published: 01 December 2008
Fig. 25 Influence of tempering temperature on Brinell hardness of five oil-quenched unalloyed and alloyed gray irons for 1 h tempering. Composition of irons given in table. Source: Ref 62 More