1-20 of 443 Search Results for

temper embrittlement

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1996
Fig. 26 Schematic diagram showing the effect of temper embrittlement on toughness More
Image
Published: 01 January 1996
Fig. 6 Effect of phosphorus content on the temper embrittlement (ΔFATT) of three step-cooled forging steels, Source: Ref 8 More
Image
Published: 01 August 2013
Fig. 7 Effect of cooling rate on temper embrittlement. Adapted from Ref 15 More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
...-induced embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition, the article covers stress-corrosion cracking along...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
... structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion. electrogas welding...
Image
Published: 01 January 1996
Fig. 5 Heat treatment cycles that could produce (1) tempered martensite embrittlement or (2) and (3) temper embrittlement in a 3340 steel. A, austenite; F, ferrite; C, cementite More
Image
Published: 30 August 2021
Fig. 28 Scanning electron micrograph illustrating the characteristic rodlike artifacts associated with aluminum nitride embrittlement. This characteristic appearance is confirmation of aluminum nitride embrittlement as opposed to ferrite films or temper embrittlement, which also lead More
Image
Published: 01 January 1996
Fig. 11 Correlation of the Charpy V-notch fracture appearance transition temperature (FATT) with the J -factor for temper embrittlement of Cr-Mo steels More
Image
Published: 01 January 1996
Fig. 7 Effects of manganese, silicon, phosphorus, and tin on the kinetics of temper embrittlement at 480 °C (895 °F) for a 2 1 4 Cr-1Mo Steel. Source: Ref 9 , 10 More
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005815
EISBN: 978-1-62708-165-8
.... The article discusses the embrittlement problems associated with tempering. Four types of equipment are used for tempering, namely, convection furnaces, salt bath furnaces, oil bath equipment and molten metal baths. Special procedures for tempering are briefly reviewed. cracking dimensional change...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
..., and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
..., or precipitation of films or finely dispersed phases along grain boundaries. Impurity-segregation-induced intergranular fracture is most often called “temper embrittlement”; fracture generally occurs along prior-austenite grain boundaries. Fracture by this mode occurs most frequently in alloy steels containing...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals. atomic structure brittle cracking crack propagation crystalline structure ductile cracking ductility...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... (the spacing between the alternating plates of ferrite and cementite in pearlite). In a hardened and tempered steel, manganese can have the opposite effect, as illustrated in Fig. 12 . Manganese can make the steel susceptible to temper embrittlement, and it may cause the formation of less tough upper bainite...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005985
EISBN: 978-1-62708-168-9
... on heating should be sufficiently high to permit tempering above the temper embrittlement range. These criteria are somewhat challenging to meet. Figure 1(a) shows that at low-carbon (0.05%) levels austenite is stable up to about 12% chromium, above which some δ−ferrite tends to be stable at all...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005938
EISBN: 978-1-62708-168-9
... treatment simulation mechanical properties quench cracking quenchants steel temper embrittlement tool steel HEAT TREATING is done to not only optimize microstructure formation and residual stress distribution, but also to reduce quench distortion and prevent quench cracking. Many studies...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... their resistance against creep and temper embrittlement. However, HSLA steels, which are discussed in the article “High-Strength Structural and High-Strength Low-Alloy Steels” in this Volume, may be effective substitutes for carbon steels in elevated-temperature applications. Another category of ferritic steels...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003636
EISBN: 978-1-62708-182-5
... in the hydrogen embrittlement of steels. Also, embrittling species are less likely to be influenced by the effects of grain- boundary impurities, such as antimony, phosphorus, and tin, which cause significant effects on the severity of hydrogen and temper embrittlement of metals. Investigations of SMIE and LMIE...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... level. As the alloy content is increased for better high-temperature strength, the susceptibility to reheat cracking and temper embrittlement increases. Such concerns promote more testing and evaluation. The preponderance of toughness data reported in the literature for pressure-bearing, high...