Skip Nav Destination
Close Modal
Search Results for
temper embrittlement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 500 Search Results for
temper embrittlement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2014
Fig. 16 Effects of impurity elements (mass ppm) on temper embrittlement in steels. Source: Ref 30
More
Image
Published: 01 August 2013
Image
Published: 01 January 1990
Fig. 18 Influence of alloying elements on the temper embrittlement of steels (compositions given in accompanying table) containing 600 to 800 ppm Sb. The left end of bar gives the nonembrittled DBTT; the right end of bar gives the DBTT after embrittlement (except for line F, which is reversed
More
Image
Published: 01 January 1990
Fig. 19 Influence of alloying elements on the temper embrittlement of steels (compositions given in accompanying tables). (a) Steel containing 500 to 600 ppm P. (b) Steel containing 460 to 480 ppm Sn. (c) Steel containing 500 to 530 ppm As. The left end of bar gives the nonembrittled DBTT
More
Image
Published: 01 January 1990
Fig. 24 Influence of prior-austenite grain size on the temper embrittlement of a nickel-chromium alloy steel that was heat treated to produce two levels of grain size. The alloy was tempered at 650 °C (1200 °F) and aged various times at 500 °C (930 °F). (a) Actual 100% fibrous FATT. (b) Change
More
Image
Published: 01 January 1990
Fig. 25 Influence of microstructure on the temper embrittlement susceptibility of a chromium-molybdenum-vanadium alloy steel as a function of hardness. (a) Actual 50% FATT. (b) Change in 50% FATT, F/P, ferrite-30% pearlite structure; E, embrittled; NE, nonembrittled. Source: Ref 106
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 7 Plot showing the effect of temper embrittlement on the fracture toughness of a 1CrMoV steel. Source: Ref 8
More
Image
Published: 01 January 1996
Image
Published: 01 January 1996
Fig. 6 Effect of phosphorus content on the temper embrittlement (ΔFATT) of three step-cooled forging steels, Source: Ref 8
More
Image
Published: 01 January 1990
Fig. 21 Time-temperature diagram for isothermally temper-embrittled AISI/SAE 3140 alloy steel showing constant embrittlement levels (100% fibrous FATT) for quenched and tempered (675 °C, or 1245 °F, for 1 h), specimens. Source: Ref 101
More
Image
Published: 01 January 1990
Fig. 22 Revised time-temperature diagram for temper-embrittled AISI/SAE 3140 alloy steel. Source: Ref 102
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
... embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition, the article covers stress-corrosion cracking along with properties...
Abstract
This article examines the embrittlement of iron and carbon steels. It describes compositional, processing, and service conditions that contribute to the problem and presents examples of how embrittlement influences mechanical properties. Embrittlement due to hydrogen is the most common form of embrittlement and influences the behavior and properties of nearly all ferrous alloys and many metals. The article explains why hydrogen embrittlement is so widespread and reviews the many types of damage it can cause. It also explores other forms of embrittlement, including metal-induced embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition, the article covers stress-corrosion cracking along with properties and conditions that affect it, and the procedures to detect and evaluate it.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
..., and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion. electrogas welding electroslag...
Abstract
Electroslag welding (ESW) and electrogas welding (EGW) are two related procedures that are used to weld thick-section materials in the vertical or near-vertical position between retaining shoes. This article discusses the fundamentals of the electroslag process in terms of heat flow conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion.
Image
Published: 01 February 2024
Fig. 32 Shift in impact transition curve to higher temperatures as a result of temper embrittlement of SAE 3140 steel subjected to isothermal holding and furnace cooling through the critical temperature range for temper embrittlement. Adapted from Ref 3
More
Image
Published: 01 January 1996
Fig. 5 Heat treatment cycles that could produce (1) tempered martensite embrittlement or (2) and (3) temper embrittlement in a 3340 steel. A, austenite; F, ferrite; C, cementite
More
Image
Published: 30 August 2021
Fig. 28 Scanning electron micrograph illustrating the characteristic rodlike artifacts associated with aluminum nitride embrittlement. This characteristic appearance is confirmation of aluminum nitride embrittlement as opposed to ferrite films or temper embrittlement, which also lead
More
Image
Published: 01 January 2002
Fig. 51 Scanning electron micrograph illustrating the characteristic rodlike artifacts associated with aluminum nitride embrittlement. This characteristic appearance is confirmation of aluminum nitride embrittlement as opposed to ferrite films or temper embrittlement, which also lead
More
Image
Published: 01 January 1990
Fig. 38 Variation in Charpy V-notch impact energy with temperature for 5140 steel hardened and tempered at 620 °C (1150 °F). One series of specimens was quenched from tempering temperature; the other was furnace cooled. Slow cooling of susceptible steels causes temper embrittlement. Source
More
Image
Published: 01 January 1990
Fig. 23 Time-temperature diagram for the segregation of phosphorus in temper-embrittled AISI/SAE 3140 alloy steel. The numbers next to the curves describe the degree of phosphorus segregated during the embrittlement treatment (not including the 0.06 monolayers of phosphorus segregated prior
More
Image
Published: 01 October 2014
Fig. 9 Impact toughness and hardness as a function of tempering temperature. Retained austenite content is also shown. Notice the hash-marked area, indicated as a temper embrittlement region, where very low toughness is observed; this region coincides with the peak hardness. Source: Ref 3
More
1