Skip Nav Destination
Close Modal
Search Results for
temper designation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1187
Search Results for temper designation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001058
EISBN: 978-1-62708-162-7
... Abstract A four-digit numerical designation system is used to identify wrought aluminum and aluminum alloys. In addition to providing a detailed account of the temper designation system for aluminum and aluminum alloys, this article describes wrought and cast aluminum and aluminum alloy...
Abstract
A four-digit numerical designation system is used to identify wrought aluminum and aluminum alloys. In addition to providing a detailed account of the temper designation system for aluminum and aluminum alloys, this article describes wrought and cast aluminum and aluminum alloy designations. It also tabulates the grade designations and compositions of wrought and cast aluminum and aluminum alloys. The article provides information on cross-referencing of aluminum wrought and ingot/cast products according to composition, per the Aluminum Association, Unified Numbering System (UNS) and International Organization for Standardization (ISO) standards.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... Abstract This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered...
Abstract
This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered by American National Standards Institute (ANSI) standard H35.1. Furthermore, the article provides a short note on the designation of unregistered tempers.
Book Chapter
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006531
EISBN: 978-1-62708-207-5
... Abstract This article presents a summary of aluminum temper designations, and applicable aluminum alloys and product forms for temper designations used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107). aluminum alloys aluminum temper designations...
Abstract
This article presents a summary of aluminum temper designations, and applicable aluminum alloys and product forms for temper designations used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107).
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... Abstract The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006622
EISBN: 978-1-62708-210-5
... Abstract This article lists temper designations and their definitions for aluminum alloys along with their product forms used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107). aluminum alloys temper designations Temper designations and definitions...
Abstract
This article lists temper designations and their definitions for aluminum alloys along with their product forms used in the United States (ANSI H35.1), Europe (EN 515), and internationally (ISO 2107).
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
... information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems. cast aluminum alloys temper designations wrought aluminum alloys mechanical properties THE MOST WIDELY ACCEPTED alloy and temper designation...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Image
Published: 01 June 2016
Fig. 75 Elevated-temperature aging characteristics of cast 356 alloy. Temper designations apply before aging.
More
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
... Abstract This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006720
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits, processing effects on physical and mechanical properties, and fabrication characteristics of electrical bus conductor aluminum alloys 6101 and 6201 along with standard temper designations. Machining and forming characteristics...
Abstract
This datasheet provides information on composition limits, processing effects on physical and mechanical properties, and fabrication characteristics of electrical bus conductor aluminum alloys 6101 and 6201 along with standard temper designations. Machining and forming characteristics of alloy 6101 are compared with related alloys and tempers.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003125
EISBN: 978-1-62708-199-3
... Abstract This article discusses the classification, characteristics and temper designations of wrought aluminum alloys. Wrought aluminum products are available as flat-rolled products such as sheets, plates, and foils; rods, bars, and wires; tubular products such as tubes and pipes; extruded...
Abstract
This article discusses the classification, characteristics and temper designations of wrought aluminum alloys. Wrought aluminum products are available as flat-rolled products such as sheets, plates, and foils; rods, bars, and wires; tubular products such as tubes and pipes; extruded shapes; forgings; and impacts. The article provides information on product economics, design and selection, including product dimension and dimension tolerances, and design and use of wrought product capabilities. Finally, it tabulates the specifications and standards for aluminum mill products.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
... steps and physical metallurgy of beryllium-copper, beryllium-nickel, and beryllium-aluminum alloy, and tabulates their mechanical, electrical and physical properties, and temper designations. It describes the important features of this alloy group, including information on safe handling. Additionally...
Abstract
Addition of beryllium, up to about 2 wt″, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics, production steps and physical metallurgy of beryllium-copper, beryllium-nickel, and beryllium-aluminum alloy, and tabulates their mechanical, electrical and physical properties, and temper designations. It describes the important features of this alloy group, including information on safe handling. Additionally, the article presents examples of the beneficial properties of beryllium-copper alloys and quantifies some of the major reasons for their selection for particular applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001065
EISBN: 978-1-62708-162-7
..., corrosion ratings, temper designations, and applications of wrought copper and copper alloys. It also presents an outline of the most commonly used mechanical working and heat treating processes. The copper industry in the United States is broadly composed of two segments: producers (mining, smelting...
Abstract
Copper and copper alloys constitute one of the major groups of commercial metals due to their excellent electrical and thermal conductivities, corrosion and fatigue resistance, ease of fabrication, and good strength. This article lists the types, properties, fabrication characteristics, corrosion ratings, temper designations, and applications of wrought copper and copper alloys. It also presents an outline of the most commonly used mechanical working and heat treating processes. The copper industry in the United States is broadly composed of two segments: producers (mining, smelting, and refining companies) and fabricators (wire mills, brass mills, foundries, and powder plants). The article discusses copper production methods and describes major changes in the structure of the U.S. copper and copper alloys industry.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
... describes alloy and temper designations of cast and wrought magnesium alloys. The role of mechanical properties and fabrication characteristics in selection of product forms for structural applications is covered. The article explores the use of magnesium alloys as a substitution for heavier metals...
Abstract
Magnesium and magnesium alloys have been employed in a wide variety of structural applications because of their favorable combination of tensile strength, elastic modulus, and low density. Providing a brief section on occurrence, production, and uses of magnesium, this article describes alloy and temper designations of cast and wrought magnesium alloys. The role of mechanical properties and fabrication characteristics in selection of product forms for structural applications is covered. The article explores the use of magnesium alloys as a substitution for heavier metals such as steel and aluminum alloys to reduce weight in structural parts.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006487
EISBN: 978-1-62708-207-5
... Abstract Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses...
Abstract
Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses the annealing of worked structures in terms of recovery, recrystallization, and grain coarsening. It summarizes some of the annealing treatments used in conjunction with fabrication by metal working, including preheating, interannealing, self-annealing, stabilization, and stoving. The article concludes with information on the key process parameters affecting the final properties of aluminum alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006709
EISBN: 978-1-62708-210-5
... pipe and tube Physical properties are given in Table 2 . Mechanical and physical property limits of 6005 and 6105 are given in Table 3 with temper designations described in Table 4 . When bending is required, the naturally aged T1 temper is preferred. Due to the excess silicon content...
Abstract
Alloys 6005 and 6105 were developed in the 1960s to be used in place of alloy 6061 in many applications. This datasheet provides information on chemical composition limits, fabrication characteristics, processing effects on physical and mechanical properties, and applications of medium-strength extrusion alloys 6005, 6005A, and 6105.
Image
Published: 15 June 2019
Fig. 1 Comparative characteristics of alloy 6042 with related alloys/tempers rating: A, Excellent; B, Good; C, Fair; D, Poor. Temper T5511H is a SAPA special temper designation. Source: Ref 1
More
Image
in Heat Treatment Practices of Age-Hardenable Aluminum Alloys[1]
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 12 Schematic illustration of precipitation heat treatment tempers T79 to T73 (T77 excluded) used to increase corrosion resistance with decrease in strength. Sources: ANSI H35.1/H35.1(M)-2009, Revision of H35.1/H35.1(M)-2006, American National Standard Alloy and Temper Designation Systems
More
Image
in Properties of Cast Copper Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 4 Hot hardness of C82200, TF00 temper. Aged at 480 °C (900 °F). Useful design range is up to 370 °C (700 °F)
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002411
EISBN: 978-1-62708-193-1
... are strengthened by cold work and/or precipitation hardening. The spinodally strengthened copper-nickel-tin alloy is cold worked and aged. The temper designations used for the materials tested are listed in Table 2 . These designations are used throughout the text and figures. Because of their ability...
Abstract
Copper alloys are classified by the International Unified Numbering System designations to identify alloy groups by major alloying element. This article presents the designations and compositions of various copper alloys, such as brasses, nickel silvers, bronzes, beryllium coppers, and spinodal alloys. It discusses the fatigue testing of the copper alloys and tabulates the tensile and fatigue strengths of the copper alloys. The article schematically illustrates S-N curves for the solid-solution (non-aging) strengthened alloys. It concludes with a discussion on the role of microstructure in the fatigue performance of beryllium copper alloys.
Image
Published: 01 June 2016
1