Skip Nav Destination
Close Modal
By
Wenqian Xu, Saul H. Lapidus, Andrey Y. Yakovenko, Youngchang Kim, Olaf J. Borkiewicz ...
Search Results for
synchrotron X-ray diffraction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 54 Search Results for
synchrotron X-ray diffraction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006654
EISBN: 978-1-62708-213-6
... Abstract This article discusses the techniques and applications of synchrotron x-ray diffraction, providing information on x-ray generation, monochromation, and crystallography. X-ray diffraction techniques covered include single-crystal and powder diffraction. Some of the factors involved...
Abstract
This article discusses the techniques and applications of synchrotron x-ray diffraction, providing information on x-ray generation, monochromation, and crystallography. X-ray diffraction techniques covered include single-crystal and powder diffraction. Some of the factors involved in the construction and development of macromolecular x-ray crystallography are also described.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques. X-ray topography...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... in synchrotrons and X-FELs is pulsed, because bunches of electrons are involved. The difference in brilliance between laboratory sources and large-scale facilities currently can be up to 20 orders of magnitude. Both the white radiation and the characteristic spectrum have utility in x-ray diffraction...
Abstract
This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and monochromatic beams, powder diffraction methods, and the Rietveld method.
Image
in Effect of Irradiation on Stress-Corrosion Cracking and Corrosion in Light Water Reactors
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 37 Tetragonal fraction in oxide formed in Zircaloy-4 tested in pure water, calculated from synchrotron radiation micro-x-ray diffraction, versus distance from the oxide/metal interface. Source: Ref 176
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001760
EISBN: 978-1-62708-178-8
... Abstract X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography...
Abstract
X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography. The article explains various topographic methods, namely, divergent beam method, polycrystal rocking curve analysis, line broadening analysis, microbeam method, and polycrystal scattering topography, as well as their instrumentation. It also describes the applications of x-ray topography.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001764
EISBN: 978-1-62708-178-8
... of synchrotron radiation as the x-ray source for EXAFS experiments. It also describes the typical EXAFS data analysis of pure nickel at 90 K, and explains the near-edge structure analysis of vanadium. The article presents a discussion on the unique features and applications of EXAFS. data analysis...
Abstract
This article provides an introduction to extended x-ray absorption fine structure (EXAFS). It describes the fundamentals of EXAFS with an emphasis on the physical mechanism, the single-scattering approximation, and multiple-scattering effects. The article discusses the use of synchrotron radiation as the x-ray source for EXAFS experiments. It also describes the typical EXAFS data analysis of pure nickel at 90 K, and explains the near-edge structure analysis of vanadium. The article presents a discussion on the unique features and applications of EXAFS.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005218
EISBN: 978-1-62708-187-0
... morphology evolution, solute transport, and various process phenomena at spatiotemporal resolutions. It discusses the three viable imaging techniques made available by synchrotron radiation for the real-time investigation of solidification microstructures in alloys. These include two-dimensional X-ray...
Abstract
Metal transparency and interaction with X-rays have been recognized as obvious candidate principles from which methods for in situ monitoring of solidification processes could be developed. This article describes the use of X-ray imaging-based techniques to investigate interface morphology evolution, solute transport, and various process phenomena at spatiotemporal resolutions. It discusses the three viable imaging techniques made available by synchrotron radiation for the real-time investigation of solidification microstructures in alloys. These include two-dimensional X-ray topography, two-dimensional X-ray radiography, and ultra-fast three-dimensional X-ray tomography.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001762
EISBN: 978-1-62708-178-8
.... Sufficiently accurate x-ray and neutron data can be collected in several hours to several days, depending on the intensity of the source and the type of detection system. High-intensity synchrotron sources enable collection of data in minutes. Collection of electron-diffraction data requires seconds to minutes...
Abstract
The diffraction pattern of any material contains structural and chemical property information that can be extracted using radial distribution function analysis. This article provides an introduction to the technique and presents several examples highlighting various ways in which it can be used. It begins with a discussion on the principles of diffraction and scattering and the effectiveness of x-ray, neutron, and electron energy sources for different types of measurements. It provides information on data collection and reduction and explains how to create atomic distribution plots from intensity and scattering angle data. The article also presents application parameters for defining short distances and background intensity and describes a procedure for generating pair distribution functions.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006665
EISBN: 978-1-62708-213-6
... by a discussion on the use of synchrotron radiation as an X-ray source for EXAFS. Data-reduction procedures used to extract EXAFS signals are then described. The article also provides information on the analysis of x-ray absorption near-edge structure spectrum and ends with a discussion on the unique features...
Abstract
This article provides a detailed account of extended x-ray absorption fine structure (EXAFS). It begins with a description of the fundamentals of EXAFS, providing information on the physical mechanism, single-scattering approximation, and multiple-scattering effects. This is followed by a discussion on the use of synchrotron radiation as an X-ray source for EXAFS. Data-reduction procedures used to extract EXAFS signals are then described. The article also provides information on the analysis of x-ray absorption near-edge structure spectrum and ends with a discussion on the unique features and applications of EXAFS.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the techniques used to characterize samples. The article then describes the principles, advantages, and disadvantages of various types of powder diffractometers. A section on the Rietveld method of diffraction analysis is then presented. The article discusses various methods and procedures for qualifying and quantifying phase mixtures in powder samples. It provides information on typical sensitivity and experimental limits on precision of XRPD analysis and other systematic sources of errors that affect accuracy. Some of the factors pertinent to the estimation of crystallite size and defects are also presented. The article ends with a few application examples of XRPD.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
... Abstract This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis...
Abstract
This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis, and applications and interpretation of micro-XRD.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001763
EISBN: 978-1-62708-178-8
..., desmearing parameters, and the types of scattering curves are illustrated. ceramics ferrous metals metallic glass nonferrous metals polymers small-angle neutron scattering small-angle X-ray diffraction Overview Introduction Small-angle x-ray scattering (SAXS) and small-angle neutron...
Abstract
This article presents the experimental and theoretical aspects of small-angle scattering, and discusses specific applications used in the characterization of metals, glasses, polymers, and ceramics. The basic methods of collimating x-rays, the cause of smearing from a line source, desmearing parameters, and the types of scattering curves are illustrated.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
... elastoplasticity is treated as the flow rule ( Ref 8 ). It is common practice to use such a model when studying the operative deformation mechanisms during the elastic-plastic transition and the intergranluar strains that arise, measured by neutron or synchrotron x-ray diffraction ( Ref 9 , Ref 10 , Ref 11...
Abstract
Self-consistent models are a particular class of models in continuum micromechanics, that is, the field concerned with making predictions of the properties and evolution of aggregates whose single-crystal deformation behavior is known. This article provides information on the measurement and representation of textures as well as prediction of texture evolution in single-phase materials and two-phase aggregates.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001765
EISBN: 978-1-62708-178-8
... studies at synchrotrons have demonstrated some potential for x-ray studies of magnetic ordering, almost all known magnetic structures have been determined by neutron diffraction. Third, the form factor is essentially constant with diffraction angle, unlike those for x-ray or electron diffraction...
Abstract
Neutrons are a principal tool for the study of lattice vibrational spectra in materials. This article provides a detailed account of fission and spallation methods of neutron production that are capable of producing sufficient intensity to be useful in neutron scattering research. It describes the instrumentation required for, and advancements made in, neutron powder diffraction. The article further explains the texture and residual stress (macrostresses and microstresses) problems that are analyzed using the neutron powder diffraction method. It also outlines the single-crystal neutron diffraction technique, and provides examples of the applications of neutron diffraction.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006631
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of the concepts of single-crystal x-ray diffraction (XRD). It begins with a historical review of XRD methods, followed by a description of the various factors involved in crystal symmetry. The article then focuses on the phase problem in x-ray...
Abstract
This article provides a detailed account of the concepts of single-crystal x-ray diffraction (XRD). It begins with a historical review of XRD methods, followed by a description of the various factors involved in crystal symmetry. The article then focuses on the phase problem in x-ray structural analysis and validation of the structural model. Some of the factors to be considered for performing experimental procedure are provided. The article presents several examples of applications of single-crystal XRD. The following sections cover the crystallographic problem in terms of structural analysis, software programs for crystal structure solution and refinement, and visualization of crystal structures. The article ends with a discussion on various databases available for single-crystal XRD analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required...
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... crystal ori- dot map. See x-ray map. electromagnetic lens. An electromagnet de- entation. signed to produce a suitably shaped mag- duoplasmatron. A type of ion source in netic field for the focusing and deflection diffraction grating. A series of a large which a plasma created by an arc dis- of electrons...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... with higher resolution and sensitivity than EDS X-ray diffraction (XRD) Diffraction of the incident x-ray beam from various plans of crystal lattice create a diffraction pattern characteristic of the sample. Elemental and phase identity and composition of inorganic corrosion product Auger electron...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... usually decrease in the intensity of the beam (light, analysis. involves a combination of imaging, chemi- x-rays, electrons, and so on) when passing cal analysis, and crystallographic analysis through matter. In many cases, speci c adsorption chromatography. Chromatogra- by diffraction at high spatial...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
1