Skip Nav Destination
Close Modal
Search Results for
surface defects
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 469 Search Results for
surface defects
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
.... The normal sequence of preparation steps prior to painting or electroplating of zinc alloy die castings includes: Mechanical finishing to smooth parting lines and rough or defective surfaces, plus buffing, if necessary Solvent degreasing or aqueous-based solution degreasing followed by rinsing...
Abstract
Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating and finishing processes. It explains how to remove parting lines and presents several mechanical finishing methods, including surface polishing, brushing, controlled shot peening, and buffing. It also provides information on solvent cleaning, emulsion cleaning, aqueous detergent or alkaline cleaning), electrocleaning, acid dipping, and zinc conversion coating treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... for heavy welds. The first polishing operation should be done with very fine grit to remove all surface defects and give a base upon which to build the final finish. Wheels of No. 60 to 80 grit are usually required to remove heavy oxide or deep defects. The first operation should be done dry...
Abstract
Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. This article discusses the procedures used for pickling nickel and nickel alloys. It discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
... performance was best suited to detection of large, near-surface defects ( Ref 3 , 4 ). In the past decade, that picture has changed dramatically. Advances in IR camera technology and the availability of small, powerful computer platforms, combined with dedicated signal processing and excitation methods, have...
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... as shot blasting. The final step, however, involves elimination of scale and other surface defects through removal of the normal, protective oxide layer and 25 to 40 μm (0.001 to 0.0015 in.) of the substrate metal by pickling the surface in a nitric-hydrofluoric acid (HNO 3 -HF) bath. The...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
.... The normal sequence of preparation steps prior to painting or electroplating of zinc alloy die castings includes: Mechanical finishing to smooth parting lines and rough or defective surfaces, plus buffing, if necessary Solvent degreasing or aqueous-based solution degreasing followed by...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... analytical instrument and the material surfaces. They fit well in the scope of this Volume because the methods provide information about composition, structure, and defects. Further, they are focused on determining and revealing characteristics of surface layers of materials that are less than 100 nm. They...
Abstract
This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm. A quick reference summary of surface-analysis methods is presented in this article.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., machining, or heat treating. Shot peening is especially effective in reducing the harmful stress concentration effects of notches, fillets, forging pits, surface defects, and the heat-affected zones of weldments. The surface tensile stresses that cause SCC can be effectively overcome by the compressive...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
... tensile loading, and cracks will propagate from a surface defect or other stress riser. Shot peening prevents these failures by creating compressive stress layers in the surfaces of parts. As a part is loaded, its critical surface area will not develop tensile stresses until the shot-peen-induced...
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... surface defects before cold rolling. Originally, strip was ground on standard strip grinders, using various oil lubricants; however, oils contributed to fire hazard and several grinding machines were partially or wholly destroyed when the oil ignited. When titanium was ground with aluminum oxide belts, a...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001310
EISBN: 978-1-62708-170-2
... cleaning most frequently used on magnesium alloys. Many foundries use flint silica sand with a fineness of 25 or 35 AFS. Occasionally, however, steel grit is used. Usually, castings are blasted immediately after shakeout to reveal any major surface defects. After gates, sprues, and risers are sawed off and...
Abstract
Surface treatments are applied to magnesium parts primarily to improve their appearance and corrosion resistance. Mechanical and chemical cleaning methods are used singly or in combination, depending on the specific application and product involved to ensure repetitive reliability. This article focuses on mechanical finishing methods, namely, barrel tumbling, polishing, buffing, vibratory finishing, fiber brushing, and shot blasting. It provides useful information on process control and difficulties with chemical and anodic treatments of magnesium alloys. The use and applications of plating and organic finishing of magnesium alloys are also reviewed. The article concludes with a description of health and safety precautions to be followed during the surface treatment process.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... by electropolishing, but electropolished surfaces are usually smoother and brighter. Electropolishing for 4 to 6 min will reduce the surface roughness to between one-third and one-half the original value. Electropolishing and chemical polishing will remove minor scratches and defects, as well as...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006024
EISBN: 978-1-62708-172-6
... initiating surface preparation, but others may not be detected until they are lifted by abrasive blast cleaning ( Fig. 6 ). These steel defects must be removed, typically by grinding. If discovered after blast cleaning, the affected area may have to be abrasive blast cleaned again after grinding is completed...
Abstract
This article reviews the steps involved in presurface-preparation inspection: substrate replacement; removal of weld spatter, rounding of sharp edges, and grinding of slivers/laminations; and removal of rust scale, grease, oil, and chemical (soluble salt) contamination. It focuses on surface preparation methods that range from simple solvent cleaning to hand and power tool cleaning, dry and wet abrasive blast cleaning, centrifugal wheel blast cleaning, chemical stripping, and waterjetting for the application of the coating system. In addition, the article provides a description of the Society for Protective Coatings' (SSPC) standards and NACE International standards as well as the International Organization for Standardization (ISO) standards and International Concrete Repair Institute (ICRI) guidelines for surface cleanliness.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
... Abstract The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing...
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... Abstract Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001306
EISBN: 978-1-62708-170-2
... (electrical steels). This article provides a detailed discussion on the various surface treatments, including cleaning, nitriding, carburizing, coating, and plating, performed on specialty steels. carburizing case hardening cleaning coating corrosion resistance deburring electrical steels ferrous...
Abstract
Specialty steels encompass a broad range of ferrous alloys noted for their special processing characteristics (powder metallurgy alloys), corrosion resistance (stainless steels), wear resistance and toughness (tool steels), high strength (maraging steels), or magnetic properties (electrical steels). This article provides a detailed discussion on the various surface treatments, including cleaning, nitriding, carburizing, coating, and plating, performed on specialty steels.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... Abstract This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005344
EISBN: 978-1-62708-187-0
... Abstract The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article...
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It also discusses select case studies relevant to inclusions, cavities (gas porosity, shrinkage), and discontinuities (hot tearing, cold shut).
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
... hot tearing. Inclusions are responsible for many serious surface defects and internal quality problems in cast products. They arise from foreign particles, such as eroded sand particles, and impurities remaining in the liquid metal after upstream refining...
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006008
EISBN: 978-1-62708-172-6
... coating due to the many potential factors that may be involved. These could include formulation, surface preparation, application, drying and curing times and conditions, and environmental exposure, with more than one contributing factor often being involved. Failures and defects can manifest themselves...
Abstract
Coatings, such as those applied to ships, must be resistant to abrasion, in the case of cargo hold coatings, and cyclic changes of chemicals and tank cleaning, in the case of tank linings. Failures and defects can manifest themselves at various times in the life of a coating. To determine the cause and mechanism of coating failure, all possible contributory factors must be evaluated together with a detailed history from the time of application to the time the failure was first noted. Many coating failures require further evaluation and analysis to be carried out by a qualified chemist or coating specialist, often using specialized laboratory equipment. The article presents examples of coating failures and defects, together with descriptions, probable causes, and suggested preventative measures.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001298
EISBN: 978-1-62708-170-2
... depth, which is defined as the distance from the surface to the depth with 63% or 1/ e of the intensity of the reflection line, is calculated for Ω- and Ψ-diffractometers, respectively: τ Ω = ( sin 2 θ − sin 2 ψ ) / [ 2 μ ( sin θ cos ψ ) ] τ Ψ...
Abstract
This article provides a useful guide for measuring residual macrostress on coatings. The most commonly used measurement methods are mechanical deflection, X-ray diffraction, and hole-drilling strain-gage. After a discussion on the origins of residual stress, the article describes the fundamental principles and presents examples of practical measurements for each method.