Skip Nav Destination
Close Modal
Search Results for
superconducting wires
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 77 Search Results for
superconducting wires
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Electrical/Electronic Applications for Advanced Ceramics
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Image
Published: 01 January 1990
Fig. 19 Schematic of the modified jelly roll process. Because niobium-tin wire is fragile and brittle, multifilament superconducting wire cannot be made from these materials after the intermetallic niobium-tin compound has been formed. The two constituents, niobium and tin, as well
More
Image
Published: 01 January 1990
Fig. 23 Infiltrated tin P/M process for producing multifilamentary superconducting wire. (a) Flow diagram. (b) Schematic. Source: Ref 51
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001108
EISBN: 978-1-62708-162-7
... 3 Sn lies) “Ternary Molybdenum Chalcogenides (Chevrel Phases)” “Thin-Film Materials” “High-Temperature Superconductors for Wires and Tapes” Even with this broad view, however, only a brief flavor of the breadth of the superconducting state and its applications can be given here...
Abstract
This article reviews the history of superconductivity from its discovery in the early 1900s to the renewed interest in the mid-1980s spurred by the development of high-temperature superconducting devices. It identifies some of the materials in which superconductivity has been observed, including metals and alloys, compounds, and oxides, and discusses their properties as well as potential applications. The article also explains how various superconducting materials are produced and provides a foundation for understanding the basic operating principles.
Image
Published: 01 January 1990
Fig. 1 Examples of some of the many nonferrous alloys and special-purpose materials described in this Volume. Shown clockwise from the upper left-hand corner are: (1) a cross-section of a multifilament Nb 3 Sn superconducting wire, 1000×; (2) a high-temperature ceramic YBa 2 Cu 3
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
... composites, including assembly, welding, isostatic compaction, extrusion, wire drawing, twisting, and final sizing. The article also provides a detailed account of the properties and applications of NbTi superconducting composites. composite fabrication techniques matrix materials niobium-titanium...
Abstract
Niobium-titanium alloys (NbTi) became the superconductors of choice in the early 1960s, providing a viable alternative to the A-15 compounds and less ductile alloys of niobium-zirconium. This can be attributed to the relative ease of fabrication, better electrical properties, and greater compatibility with copper stabilizing materials. This article discusses the ramifications of design requirements, selection criteria and processing methods of superconducting fibers and matrix materials. It provides information on the various steps involved in the fabrication of superconducting composites, including assembly, welding, isostatic compaction, extrusion, wire drawing, twisting, and final sizing. The article also provides a detailed account of the properties and applications of NbTi superconducting composites.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001114
EISBN: 978-1-62708-162-7
...-in-tube processing superconducting tapes superconducting wires vapor deposition processing THE INTEREST in applying superconductivity to power devices, transportation, electronics, and so on is directly related to predicted performance advantages and improved operating efficiency over conventional...
Abstract
The discovery of the high-critical-temperature oxide superconductors has accelerated the interest for superconducting applications due to its higher-temperature operation at liquid nitrogen or above and thus reduces the refrigeration and liquid helium requirement. It also permits usage of the high-critical-temperature oxides in magnets or power applications in high-current-carrying wire or tape with acceptable mechanical capability. This article discusses the powder techniques mainly based on the production of an oxide powder precursor, which is then subjected to various processing, including powder-in-tube processing, vapor deposition processing, and melt processing. It further discusses the microstructural, anisotropy and weak link influences on these processes.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
... superconducting wire cannot be made from these materials after the intermetallic niobium-tin compound has been formed. The two constituents, niobium and tin, as well as the copper for the matrix, are ductile materials. The multifilament wire, therefore, is made with the three metals in separate form...
Abstract
This article reviews the phase diagrams, alloy with third element additions, layer growth, critical current density, and matrix materials of A15 superconductors. It describes the production methods of tape conductors (chloride deposition, and surface diffusion) and multifilamentary wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle, superconductor. Finally, it discusses the applications of A15 superconductors in commercial magnets, power generation, power transmission, high-energy physics, and fusion.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
... Abstract Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from...
Abstract
Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001112
EISBN: 978-1-62708-162-7
...). This article discusses the fabrication methods of PbMo6S8 (PMS) and SnMo6S8 (SMS), including hot processing and cold processing. It provides a short note on the superconducting properties of PMS wire filaments and their applications in processes requiring high magnetic fields, such as high-energy physics...
Abstract
Ternary molybdenum chalcogenides stands for a vast class of materials, whose general formula is MxMO6X8, where, M is a cation and X is a chalcogen (sulfur, selenium, or tellurium). Possible applications of some of these are as high field superconductors (that is, >20 T, or 200 kG). This article discusses the fabrication methods of PbMo6S8 (PMS) and SnMo6S8 (SMS), including hot processing and cold processing. It provides a short note on the superconducting properties of PMS wire filaments and their applications in processes requiring high magnetic fields, such as high-energy physics, thermonuclear fusion, and nuclear magnetic resonance.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004008
EISBN: 978-1-62708-185-6
.... It presents an overview of the processes, equipment, dies and die materials, and lubrication associated with drawing of rod, wire, bar, and tube. The article also provides a discussion on the design considerations and manufacturing of commercial superconducting multifilamentary conductors. bar drawing...
Abstract
The drawing process, one of the oldest metal forming operations, allows excellent surface finishes and closely controlled dimensions to be obtained in long products that have constant cross sections. This article discusses the basic mechanics and preparation steps of drawing. It presents an overview of the processes, equipment, dies and die materials, and lubrication associated with drawing of rod, wire, bar, and tube. The article also provides a discussion on the design considerations and manufacturing of commercial superconducting multifilamentary conductors.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
... current transition measured resistively for a niobium-titanium wire. Source: Ref 30 Flux Pinning Abrikosov ( Ref 19 ) was the first to show that the Ginzburg-Landau theory predicted type II superconductivity. He showed that the flux quanta would be arranged in a periodic triangular lattice...
Abstract
Superconductivity has been found in a wide range of materials, including pure metals, alloys, compounds, oxides, and organic materials. Providing information on the basic principles, this article discusses the theoretical background, types of superconductors, and critical parameters of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy current loss, and radio frequency loss. Furthermore, the article describes the flux pinning phenomenon and Josephson effects.
Image
in High-Temperature Superconductors for Wires and Tapes[1]
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 3 Plot of critical current density versus external magnetic field at 4.2 K to compare two silver-sheathed powder-in-tube superconducting oxide wires (Bi-2212/Ag and YBa 2 Cu 3 O 7 ) with three conventional multifilamentary wires. J c data is for superconductor cross section, also
More
Image
in Principles of Superconductivity
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 13 Transverse cross section TEM photomicrograph of a portion of one filament of a Nb-46.5Ti composite wire. The light streaks are the α-Ti precipitates that are responsible for flux pinning through the core interaction. This wire has a large pinning force, with J c = 3150 A/mm 2 at 5
More
Image
Published: 01 January 2005
Image
in Niobium-Titanium Superconductors
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 22 Schematic representation and close-up photo of a 23-strand transposed Rutherford cable for the superconducting supercollider. Polyamide (Kapton) film wrap allows slippage with low friction as the coils are energized, reducing thermal transients in the conductor. Widely spaced
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006255
EISBN: 978-1-62708-169-6
... for lighting applications, superconducting wire, and aircraft rivets, respectively. Alloying strengthens niobium and increases its rate of work hardening, resulting in the need for more intermediate anneals. Tantalum and Tantalum Alloys Tantalum, like niobium, is quite ductile even in the recrystallized...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... alloys Zirconium Getter material in tubes in the electronics industry; fuel claddings, fasteners, and fixtures for nuclear reactors Titanium Components for bleaching equipment and desalination plants in the chemical industry; superconductive wires; turbine engine disks, blades and housings, rain...
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0005549
EISBN: 978-1-62708-162-7
... energy of the I intensity; electrical current; bias current L longitudinal; liter I ej critical current of the junction L twist pitch distance of the composite superconducting state I r resistive current GA gas atomization Is supercurrent through junction wire; length of straight bar magnet Ib pound gal...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003656
EISBN: 978-1-62708-182-5
... to determine the true rate of localized corrosion, due to the large surface area of the crevice (5.5 cm 2 , or 0.85 in. 2 ). On-line application of this sensor remains to be demonstrated in the field. Coupled Multielectrode Sensors Multielectrode systems, also called wire-beam electrodes (WBE), have...
Abstract
This article provides a discussion on the operation of various methods and sensors that have been used or have the potential to be used for on-line, real-time monitoring of localized corrosion. These include the electrochemical noise (ECN) method, nonelectrochemical methods, the galvanically coupled differential flow cell, galvanically coupled crevice cell, coupled multielectrode sensor, and electrochemical biofilm activity sensor.
1