1-20 of 321 Search Results for

superalloy-matrix composites

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
... composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001101
EISBN: 978-1-62708-162-7
... presents an overview of the status of MMCs, and provides information on physical and mechanical properties, processing methods, distinctive features, and various types of continuously and discontinuously reinforced aluminum, magnesium, titanium, copper, superalloy, and intermetallic-matrix composites...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... to develop magnesium, copper, and superalloy MMCs. metal-matrix composites high-pressure die casting pressure infiltration casting liquid metal infiltration spray deposition powder metallurgy continuous fiber-reinforced aluminum composite discontinuously reinforced titanium composites...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
...×. Courtesy of J. Wu, Deloro Stellite Group Ltd. Because the Laves intermetallic phase is so abundant in these alloys (35 to 70 vol%), its presence governs all of the material properties. Accordingly, the effects of the matrix composition in these alloys are less pronounced than in the case...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003737
EISBN: 978-1-62708-177-1
... be avoided. This procedure has been promoted for scanning electron microscopy examination of second-phase particles in superalloys, because they stand above the matrix, and their shape can be easily assessed. However, such an image is unsuitable for quantitative metallography unless the results are corrected...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001052
EISBN: 978-1-62708-161-0
... the influence of composition on the tensile and creep strength of [001]-oriented nickel-base superalloy single crystals at temperatures near 1000 °C (1830 °F). Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single-crystal version of MAR-M 247...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... be considered in the development of property data on superalloys. Similarly, other heat treatment steps should be evaluated for influence on component design and subsequent service Strengthening Mechanisms The fcc structure of the nickel matrix (γ) and its alloys offers high-temperature creep resistance...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... S, to SX parts ( Ref 22 ). Grain defects can nucleate on these inclusions. Several second-generation, rhenium-containing, single-crystal superalloys have been developed for turbine engine applications. Two typical compositions are given in Table 3 . Rhenium partitions mainly to the γ matrix...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003771
EISBN: 978-1-62708-177-1
... for various applications such as: Permanent and soft magnetic materials Superalloys for creep resistance at high-temperature Hardfacing and wear-resistant alloys Corrosion-resistant alloys High-speed steels, tool steels, and other steels Cobalt-base tool materials (e.g., the matrix...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... properties for applications at temperatures below the lower temperature level of 540 °C (1000 °F) established in this article for superalloy use. Phases and Structures of Superalloys Superalloys consist of the austenitic fcc matrix phase γ plus a variety of secondary phases. Secondary phases of value...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
...Abstract Abstract Oxide dispersion-strengthened (ODS) alloys are produced by mechanical alloying, a process by which base metals and alloying particles are powdered together forming a metal-matrix composite. This article discusses the production of ODS superalloy powders and subsequent...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... on the major concerns in the development of nickel-base superalloys, such as γ′ solvus temperature, matrix (γ)/precipitate (γ′) misfit, and the formation of deleterious topologically closed-packed phases. In example 3, phase diagram calculation is applied to commercial titanium alloys. The β-transus...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001049
EISBN: 978-1-62708-161-0
..., several nickel-iron superalloys, such as Inconel 706 and Inconel 718, contain γ″ Ni 3 Nb as the principal precipitate, as well as γ′. Further, oxide dispersion strengthened alloys contain a few volume percent of a dispersed phase such as Y 2 O 3 in a γ-γ′ matrix, while composites (mechanically...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
.... It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites. aluminum alloys casting copper alloys magnesium alloys melting metal...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
.... Physical Metallurgy The microstructure of nickel-base superalloys has a profound effect on their performance. Fortunately, their microstructure is quite simple—consisting of a solid-solution-strengthened austenitic face-centered cubic (fcc) matrix, coherent intermetallic precipitates with an L 1 2...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... 921–963 11 1 8 23 … 43 Wrought aluminum alloys 964–1095 12 11 25 76 8 132 P/M aluminum alloys 1096–1102 … … … 7 … 7 Titanium alloys 1103–1195 1 7 8 68 9 93 Miscellaneous metals and alloys (h) 1196–1249 1 … 9 27 17 54 Metal-matrix composites...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005536
EISBN: 978-1-62708-197-9
... for a given time-step at each grid point. Second, at the end of each time-step, a calculation of the equilibrium between the matrix and the precipitate phases is made by automatically calling Thermo-Calc, and the new phase compositions are obtained. Thus, the matrix composition changes, and DICTRA solves...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
.... Superalloy Design Nickel-Base Superalloys Nickel-base superalloys have microstructures consisting of an austenitic face-centered cubic (fcc) matrix (γ) dispersed intermetallic fcc γ′ Ni 3 (Al,Ti) precipitates coherent with the matrix (0 to 0.5% lattice mismatch), and carbides, borides, and other...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... matrix phase is a function of overall alloy composition and the phases that precipitate during solidification, upon heat treatment, or in service. Stacking faults are regions of the hcp configuration contained in the fcc matrix and are an important crystallographic feature of cobalt alloys...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003472
EISBN: 978-1-62708-195-5
...Abstract Abstract This article focuses on the techniques used in recycling of aluminum metal matrix composites (MMCs) such as discontinuous SiC reinforced aluminum MMCs and continuous reinforced aluminum MMCs. It provides a discussion on the properties of recycled aluminum MMCs and disposal...