Skip Nav Destination
Close Modal
By
J.J. deBarbadillo, J.J. Fischer
By
Prasan K. Samal
By
Stephen J. Mashl
By
D.U. Furrer, S.L. Semiatin
Search Results for
superalloy powder
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 366
Search Results for superalloy powder
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Gas atomization system for superalloy powder production. (a) Atomization no...
Available to Purchase
in Wrought and P/M Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 17 Gas atomization system for superalloy powder production. (a) Atomization nozzle. (b) Typical system. Source: Ref 28
More
Image
in Wrought and P/M Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Image
Published: 01 June 2016
Book Chapter
Dispersion-Strengthened Nickel-Base and Iron-Base Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
... Abstract Oxide dispersion-strengthened (ODS) alloys are produced by mechanical alloying, a process by which base metals and alloying particles are powdered together forming a metal-matrix composite. This article discusses the production of ODS superalloy powders and subsequent processing steps...
Abstract
Oxide dispersion-strengthened (ODS) alloys are produced by mechanical alloying, a process by which base metals and alloying particles are powdered together forming a metal-matrix composite. This article discusses the production of ODS superalloy powders and subsequent processing steps, including consolidation, hot rolling, heat treating, and the fabrication of mill products. It also discusses the nominal composition and microstructure of commercial ODS alloys, including nickel, iron, and aluminum-base systems, and provides detailed information on their mechanical, physical, oxidation, and hot-corrosion properties.
Image
Scanning electron microscope image of a gas-atomized, nickel-base superallo...
Available to Purchase
in Metal Powder Production and Powder Size and Shape Distribution
> Additive Manufacturing Processes
Published: 15 June 2020
Fig. 7 Scanning electron microscope image of a gas-atomized, nickel-base superalloy powder for use in powder-bed fusion additive manufacturing. The particles are generally spherical, with several irregularly shaped particles.
More
Image
Auger composition-depth profile of argon-atomized nickel-base superalloy po...
Available to PurchasePublished: 01 December 1998
Fig. 14 Auger composition-depth profile of argon-atomized nickel-base superalloy powder. Source: Ref 5
More
Image
Hot isostatic pressing densification maps for a nickel-base superalloy powd...
Available to PurchasePublished: 30 September 2015
Fig. 7 Hot isostatic pressing densification maps for a nickel-base superalloy powder having a particle diameter of 50 µm (2 mils). (a) Density as a function of pressure (pressure expressed as the log of the ratio of applied hydrostatic pressure over flow stress) when processed at constant
More
Book Chapter
Introduction to Full Density Powder Metallurgy
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006142
EISBN: 978-1-62708-175-7
... of dispersoids from the matrix. In beryllium and magnesium alloys, powder consolidation leads to a finer grain size. In superalloys, homogeneous microstructures, free of segregation, can be produced. Traditionally, the PM full density products made via HIP and extrusion are in the form of mill shapes...
Abstract
This article provides a basic introduction to the various aspects of full density powder metallurgy, including properties, applications, processing methods, and process parameters.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001049
EISBN: 978-1-62708-161-0
... Abstract This article focuses on the properties of conventional wrought superalloys based on nickel, iron, and cobalt, as well as on the properties of alloys produced from powder. The powder metallurgy (P/M) category includes alloys that were originally developed as casting alloys; new alloy...
Abstract
This article focuses on the properties of conventional wrought superalloys based on nickel, iron, and cobalt, as well as on the properties of alloys produced from powder. The powder metallurgy (P/M) category includes alloys that were originally developed as casting alloys; new alloy compositions developed specifically to benefit from powder processing; and oxide dispersion strengthened alloys (particularly those produced by mechanical alloying). The article discusses some of the applications of superalloys and emphazises the interplay between chemical composition, microstructure, consolidation method, mechanical properties and surface stability of wrought nickel alloys. Vacuum melting processes are a necessity for many nickel- and iron-nickel-base alloys because of the presence of aluminum and titanium as solutes. Cobalt-base alloys do not usually contain these elements and may be melted in air. An appendix to this article presents the property data and corresponding information on a family of cobalt-chromium-tungsten-carbon alloys that use P/M processing.
Book Chapter
Powder Metallurgy Processing by Hot Isostatic Pressing
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006042
EISBN: 978-1-62708-175-7
... to manufacture structural materials. In the 1960s, the development of inert gas atomization as a method to produce metal powders enabled the production of highly alloyed tool-steel and superalloy powders. Due to the rapid solidification rates inherent in the atomization process, this technique avoided...
Abstract
This article discusses metal powder processing via hot isostatic pressing (HIP) and HIP cladding when metal powders are being employed in the cladding process. It traces the history of the process and details the equipment, pressing cycle, and densification mechanisms for HIP. The article describes the available process routes for fabricating products using HIP and the steps involved in the production of a part via direct HIP of encapsulated gas-atomized spherical powder. It concludes with information on the microstructures of 316L stainless steel HIP powder metallurgy valve body and a list of the mechanical properties of several powder metallurgy alloys.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
... a short discussion on binder jet AM and powder recyclability. additive manufacturing nickel-base superalloys strengthening mechanisms texture control NICKEL-BASE SUPERALLOYS are employed in a wide range of applications where materials are required to withstand harsh operating environments...
Abstract
This article covers the current state of materials development of nickel-base superalloys for additive manufacturing (AM) processes and the associated challenges. The discussion focuses on nickel-base superalloy fusion AM processes, providing information on typically encountered cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides a short discussion on binder jet AM and powder recyclability.
Book Chapter
Thermomechanical Processes for Nonferrous Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... supersolvus temperatures is also critical for controlling grain growth prior to and following the forging cycle. Powder-Metallurgy Nickel-Base Superalloys Powder-metallurgy nickel-base superalloys were originally developed specifically for the production of uniform, fine-grain microstructures (ASTM 11...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006084
EISBN: 978-1-62708-175-7
... Abstract Atomization is the dominant method for producing metal and prealloyed powders from aluminum, brass, iron, low-alloy steels, stainless steels, tool steels, superalloys, titanium alloys, and other alloys. The general types of atomization processes encompass a number of industrial...
Abstract
Atomization is the dominant method for producing metal and prealloyed powders from aluminum, brass, iron, low-alloy steels, stainless steels, tool steels, superalloys, titanium alloys, and other alloys. The general types of atomization processes encompass a number of industrial and research methods. This article describes the key process variables and production factors for the industrial methods: two-fluid, centrifugal, vacuum or soluble-gas, and ultrasonic atomization. It also reviews the effect of atomization methods and process variables on key powder characteristics such as the average particle size, particle size distribution or screen analysis, particle shape, chemical composition, and microstructure.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003835
EISBN: 978-1-62708-183-2
... on the corrosion resistance of P/M stainless steels. The approaches used to improve the corrosion resistance of sintered stainless steels are discussed briefly. The article also presents a discussion on the manufacturing and corrosion characteristics of P/M superalloys. corrosion resistance powder...
Abstract
This article provides a detailed discussion on the most commonly employed tests and specific examples of the use of these tests in evaluating the corrosion resistance of powder metallurgy (P/M) stainless steels. It describes the influence of various processing parameters on the corrosion resistance of P/M stainless steels. The approaches used to improve the corrosion resistance of sintered stainless steels are discussed briefly. The article also presents a discussion on the manufacturing and corrosion characteristics of P/M superalloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
..., and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses, and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant...
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
Book Chapter
Pack Cementation Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... are deposited either by heating the components to be treated in contact with the powder coating material in an inert atmosphere (solid-state diffusion) or by heating them in an atmosphere of a volatile compound of the coating material (out-of-contact gas-phase deposition; or chemical vapor deposition, CVD...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... industry with wrought metals. Examples of this evolution include powder forged steels, hot isostatically pressed tool steels, nickel-base superalloys, and high specific stiffness aluminum aircraft alloys Although early uses were based on the ability of P/M to form articles of high melting point metals...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Image
Examples of atomized powders. (a) Water-atomized copper. (b) Water-atomized...
Available to PurchasePublished: 30 September 2015
Fig. 3 Examples of atomized powders. (a) Water-atomized copper. (b) Water-atomized iron, apparent density 2.9 g/cm 3 . (c) Air-atomized aluminum. (d) Helium-atomized aluminum. (e) Nitrogen-atomized high-speed steel. (f) Vacuum-atomized IN-100 superalloy. (g) Plasma rotating electrode process
More
1