Skip Nav Destination
Close Modal
Search Results for
submerged arc welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 258 Search Results for
submerged arc welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... Abstract Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
... Abstract Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications...
Abstract
Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity.
Image
Published: 31 October 2011
Fig. 9 Schematic illustration of the submerged arc welding process used for heavy deposition in plane (i.e., down-hand) only. Source: Ref 2
More
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Image
Published: 01 August 2013
Image
Published: 01 December 1998
Image
Published: 01 January 1993
Fig. 21 Current (DCEP) versus wire feed speed for submerged arc welding with E3XX stainless steel electrodes. Source: Ref 27
More
Image
Published: 01 January 1993
Image
Published: 01 January 1993
Image
Published: 31 August 2017
Fig. 18 Snap coupler in which submerged arc welding was used to join malleable iron to forged steel. Dimensions given in inches. Source: Ref 3
More
Image
Published: 01 January 1997
Fig. 11 Large piston assembled by submerged arc welding (SAW). Low-carbon steel base metal; low-carbon steel filler metal (EL12). Source: Ref 15 Conditions for SAW Joint type Circumferential butt Weld type Single-U-groove, integral backing Joint preparation Machining
More
Image
Published: 01 January 1997
Fig. 13 Submerged arc welding (SAW) setup for heat-exchanger header. Carbon steel, 0.35% max C (ASTM A 515, grade 70) base metal; carbon steel filler metals. FCAW, flux cored arc welding. Source: Ref 15 Original design Improved design Welding process Manual FCAW Automatic SAW
More
Image
Published: 01 January 1997
Fig. 17 Submerged arc welding setup for steam-drum shell course. Based metal: carbon steel, 0.35% max C (ASTM A 515, grade 70), normalized. Filler metals: low-carbon steel (E7018) for root passes (shielded metal arc welding); 0.5% Mo steel for remaining passes (submerged arc welding). Source
More
Image
Published: 01 January 2003
Fig. 47 Microstructure of the second weld bead of a submerged-arc weld joint in 200 mm ( 3 4 in.) duplex stainless steel plate. The extremely fine austenite precipitate was formed as a result of reheating from the subsequent weld pass, which used an arc energy of 6 kJ/mm (150 kJ
More
Image
Published: 01 January 1993
Image
Published: 01 January 2002
Image
Published: 01 January 1996
Fig. 9 Duplex austenite-ferrite microstructure for type 308 submerged arc weld showing very high density of inclusions rich in silicon and manganese. Source: Ref 17
More
1