Skip Nav Destination
Close Modal
Search Results for
submerged arc welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 40 Search Results for
submerged arc welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... Abstract Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides...
Abstract
Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides information on process capabilities, principles of operation, power sources, electrodes, shielding gases, flux, process variables, and advantages and disadvantages of these arc welding methods. It presents information about the arc welding procedures of hardenable carbon and alloy steels, cast irons, stainless steels, heat-resistant alloys, aluminum alloys, copper and copper alloys, magnesium alloys, nickel alloys, and titanium and titanium alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... first continuous submerged direct current electric arc (Contiarc, SMS Demag AG) furnace for melting iron was installed by American Cast Iron Pipe Company in July 2001. The key to the EAF molten iron production is that it can tap, charge, and arc continuously and simultaneously. As a result, the power...
Abstract
This article focuses on the construction, operation of electric arc furnaces (EAF), and their auxiliary equipment in the steel foundry industry. It provides information on the power supply of EAF and discusses the components of the EAF, including the roof, furnace shell, spout and tap hole, water-cooling system, preheat and furnace scrap burners, and ladles. The article describes the acid and basic steelmaking practices. It discusses the raw materials used, oxidation process, methods of heat reduction, and deoxidation process in the practices. The article provides a discussion on arc melting of iron and EAF steelmaking.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005345
EISBN: 978-1-62708-187-0
... the use of this process for high-strength applications or in situations where some forms of corrosion may be of concern. Other welding processes that are often used in repair applications for ferrous castings, but to a lesser degree, include submerged arc welding (SAW) and plasma arc welding (PAW...
Abstract
Repair welding is a necessary operation for most fabricators and can cost more than the price of the original component if performed improperly. This article provides a discussion on the repair welding of castings for ferrous and nonferrous materials. The discussion focuses on surface preparation, weld repair process selection, joint selection, filler metal selection, weld repair considerations, deposition techniques, postweld heat treatment, and verification of weld repair quality.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
... oxyacetylene welding Coated electrodes, for shielded metal arc welding Tubular wires, for gas metal arc and submerged arc welding Powders, for plasma-transferred arc welding The bare rods and the cores of the coated electrodes are typically made by continuous casting. The powders are normally...
Abstract
This article addresses the cobalt and cobalt-base alloys most suited for aqueous environments and those suited for high temperatures. The performance of cobalt alloys in aqueous environments encountered in commercial applications is discussed. The article provides information on the environmental cracking resistance of the cobalt alloys. Three welding processes that are used for hardfacing with the high-carbon Co-Cr-W alloys, namely, oxyacetylene, gas tungsten arc, and plasma-transferred arc are also discussed. The article examines the effects of various modes of high-temperature corrosion. It describes the applications and fabrication of cobalt alloys for high-temperature service.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003205
EISBN: 978-1-62708-199-3
... or recommended. Nevertheless, the information presented can serve as a guide in screening processes for a joining requirement. Table 1 Recommended joining processes for various metal groups Material Thickness (a) Shielded metal arc welding Submerged arc welding Gas metal arc welding...
Abstract
This article discusses different types of joining processes, including welding, brazing, soldering, mechanical fastening, and adhesive bonding. It examines two broad classes of welding: fusion welding and solid-state welding. The article discusses the process selection considerations for welding, brazing, and soldering. It also describes joint design considerations such as selection of weld joints and welds.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003096
EISBN: 978-1-62708-199-3
...) Welded and seamless steel pipe for low-temperature service A 335 (a) Seamless ferritic alloy steel pipe for high-temperature service A 381 Double submerged-arc welded steel pipe for high-pressure transmission systems A 405 Seamless ferritic alloy steel pipe, specially heat treated for high...
Abstract
This article discusses the classifications, specifications, applications and methods for producing welded and seamless steel tubular products, including pipes and tubes. Common types of pipes include standard pipe, conduit pipe, piling pipe, pipe for nipples, transmission or line pipe, water main pipe, oil country tubular goods, water well pipe, and pressure pipe. Pipes in suitable sizes, and most of the products classified as tubing, both seamless and welded, may be cold finished. Pressure tubes are given a separate classification by both the American Society for Testing and Materials (ASTM) and producers. The term tube covers three groups, including pressure tubes, structural tubing, and mechanical tubing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
.... Other very commonly used processes for stainless steels are gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), submerged arc welding (SAW), flux-cored arc welding (FCAW), and several forms of resistance welding. The plasma arc welding (PAW), laser-beam welding (LBW), and electron-beam...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... (a) Dry sand/rubber wheel test (ASTM G 65, Procedure B): load 13.6 kg (30 lb); 200 rev. (b) Slurry/steel wheel test (ASTM B 611, modified): load 22.7 kg (50 lb); 250 rev. (c) Two-layer shielded metal arc deposit process. (d) Two-layer submerged arc welding deposit process...
Abstract
Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type alloys. Hardfacing applications for wear control vary widely, ranging from very severe abrasive wear service, such as rock crushing and pulverizing to applications to minimize metal-to-metal wear. This article discusses the types of hardfacing alloys, namely iron-base alloys, nonferrous alloys, and tungsten carbides, and their applications and advantages.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
... essentially two dimensional and difficult to detect using radiography. Arc welding is frequently used to butt weld together the ends of resistance-welded pipe, and radiography is typically used to inspect the arc-welded joints. Characteristic discontinuities in pipeline welds include slag, elongated piping...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006024
EISBN: 978-1-62708-172-6
... prepared at the same time, making the surface preparation between the two seamless. Weld spatter may be present on metal sections that were welded together using stick, flux core, gas metal arc, or gas tungsten arc methods. Weld spatter is typically not present when submerged arc welding is performed but...
Abstract
This article reviews the steps involved in presurface-preparation inspection: substrate replacement; removal of weld spatter, rounding of sharp edges, and grinding of slivers/laminations; and removal of rust scale, grease, oil, and chemical (soluble salt) contamination. It focuses on surface preparation methods that range from simple solvent cleaning to hand and power tool cleaning, dry and wet abrasive blast cleaning, centrifugal wheel blast cleaning, chemical stripping, and waterjetting for the application of the coating system. In addition, the article provides a description of the Society for Protective Coatings' (SSPC) standards and NACE International standards as well as the International Organization for Standardization (ISO) standards and International Concrete Repair Institute (ICRI) guidelines for surface cleanliness.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
... application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating. ceramic coatings chemical conversion coatings continuous...
Abstract
There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes continuous electrodeposition for steel strip and babbitting and discusses phosphate and chromate conversion coatings as well. It also addresses painting, discussing types and selection, surface preparation, and application methods. In addition, the article describes rust-preventive compounds and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... process or by selective heat treatment. Frequently, hardfacing is used to repair worn castings by building up an overlay of new material. Hardfacing is basically a welding operation in which an alloy is fused to the base metal by oxyfuel welding, arc welding, laser welding, or thermal spray processes...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... radio frequency s second S applied stress SAE Society of Automotive Engineers SAW submerged arc welding SC single-crystal SCC stress corrosion cracking scfm standard cubic feet per minute SCFH standard cubic feet per hour SCRATA Steel Castings...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.9781627081610
EISBN: 978-1-62708-161-0
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003166
EISBN: 978-1-62708-199-3
... filaments, high-current electrical contacts, and electrodes for arc lamps and tungsten inert gas welding (also called gas tungsten arc welding, or GTAW). While pure tungsten can be used for all these cited applications, optimum performance is generally realized in doped, alloyed, or composited forms...
Abstract
Very high density materials are used for such applications as counterweights and radiation shields. This article focuses on the metallurgy, processing, properties, fabrication, design considerations, health and safety considerations, and applications of the most commonly used very high density materials: depleted uranium and tungsten and their alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
...) to minimize deleterious second phases. Such second phases can occur during reheating, as in weld heat-affected zones (HAZs), typically as grain-boundary precipitates. Modern wrought alloys, with their very low carbon and silicon contents, are quite stable and can be used in the as-welded condition...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003089
EISBN: 978-1-62708-199-3
... 5 + % V 5 When the CE of a steel is less than 0.45%, weld cracking is unlikely and no heat treatment is required. Table 9 Weldability of specific metals and alloys Base metals welded Welding processes Shielded metal arc Gas tungsten arc Plasma arc...
Abstract
This article discusses the key factors that influence the selection of engineered materials for a particular application. Materials properties such as ultimate tensile strength, yield strength, hardness, and ductility, which chiefly define the performance or functional characteristics, are covered. This is followed by manufacturing process considerations such as material factors, shape factors, process factors, and the characteristics of fabricability, namely formability, workability, castability, machinability, and weldability.