Skip Nav Destination
Close Modal
By
ASM Committee on Mechanical Cutting for Welding Preparation, Lance R. Soisson, Chris Cable, Richard S. Cremisio, Chuck Dvorak ...
Search Results for
structural shapes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2382
Search Results for structural shapes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Fig. 11 Cross sections of blown shell molds of three different structural shapes. (a) Outer surface contoured to pattern. (b) Open-back box. (c) Closed (hollow) box
More
Image
Published: 01 January 2001
Image
Published: 01 January 1997
Fig. 4 Basis shapes for structural shape optimization of an automotive lower control arm. (a) Initial design. (b) Optimal design. (c) Five basis shapes of control arm model with arrows that show the location and direction of mesh distortion. Source: Ref 15
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... Abstract This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections...
Abstract
This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections that are characterized by higher yield strengths than those of plain carbon structural steels. The article tabulates the typical chemical compositions, tensile properties, heat treatment, product sizes, plate thickness and intended uses of high-strength steels. Further, it presents a short note on heat treated structural low-alloy grades.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005136
EISBN: 978-1-62708-186-3
... Abstract Bars, structural shapes, and long parts are straightened by bending, twisting, or stretching. This article describes the straightening of bars, shapes, and long parts by material displacement, heating, and presses. It explains the process of parallel-roll straightening, automatic press...
Abstract
Bars, structural shapes, and long parts are straightened by bending, twisting, or stretching. This article describes the straightening of bars, shapes, and long parts by material displacement, heating, and presses. It explains the process of parallel-roll straightening, automatic press roll straightening, moving-insert straightening, parallel-rail straightening, and epicyclic straightening. The article concludes with a discussion on straightening in bar production.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
... Abstract This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Image
in Physics-Based Feedforward Control of Metal Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 3 (a) L-shaped structure consisting of a one-bead leg and a three-bead leg (plots from point cloud data). (b) Eight-hatch build plan of the L-shaped structure, where hatches 1 to 4 are for odd layers, and hatches 5 to 8 are for even layers. Wall 1: single-bead vertical wall built by hatch
More
Image
in Fabrication of Near-Net Shape Cost-Effective Titanium Components by Use of Prealloyed Powder and Hot Isostatic Pressing
> Powder Metallurgy
Published: 30 September 2015
Fig. 12 Titanium 6Al-4V selectively net shape airframe honeycomb structure. All internal geometry of the honeycomb is net shape; the outside and height is subject to final machining.
More
Image
Published: 01 January 1996
Fig. 17 Effect of sulfide shape control on transverse toughness of structural steels. (a) Typical transition behavior of HSLA steel without inclusion shape control. Data determined on half-size Charpy V-notch test specimens. (b) Effect of cerium-to-sulfur ratio on upper-shelf impact energy
More
Image
Published: 01 November 1995
Image
Published: 15 June 2020
Fig. 5 Alumina structures further shaped after printing by EFF. Alumina part was bent, folded and rolled, then sintered. Adapted from Ref 77 with permission from Elsevier
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001014
EISBN: 978-1-62708-161-0
... in.) and greater in thickness and 203 mm (8 in.) and less in width Small angles, channels, tees, and other standard shapes less than 76 mm (3 in.) across Concrete-reinforcing bars The term “shape” includes structural shapes and special shapes. Structural shapes are flanged, are 76 mm (3 in.) or greater...
Abstract
Hot-rolled steel bars and other hot-rolled steel shapes are produced from ingots, blooms, or billets converted from ingots or from strand cast blooms or billets and comprise a variety of sizes and cross sections. Most carbon steel and alloy steel hot-rolled bars and shapes contain surface imperfections with varying degrees of severity. Seams, laps, and slivers are probably the most common defects in hot-rolled bars and shapes. Another condition that could be considered a surface defect is decarburization. Hot-rolled steel bars and shapes can be produced to chemical composition ranges or limits, mechanical property requirements, or both. Hot-rolled carbon steel bars are produced to two primary quality levels: merchant quality and special quality. Merchant quality is the least restrictive descriptor for hot-rolled carbon steel bars. Special quality bars are employed when end use, method of fabrication, or subsequent processing treatment requires characteristics not available in merchant quality bars.
Image
in Three-Dimensional Bioprinting of Naturally Derived Protein-Based Biopolymers
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 3 Examples of collagen 3D printing. Gross images of bioinks 3D printed through automated gel aspiration-ejection, where different structural shapes, such as cylindrical, quadrangular, and tubular, can be produced. Source: Ref 20 . Reprinted with permission from Wiley
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005178
EISBN: 978-1-62708-186-3
... on the shear blade life. It reviews the design requirements and best practices for the production of blades. The article compares double-cut dies with single-cut dies used for shearing of structural and bar shapes. The shearing of specific forms, such as angle iron and flat stock, is also discussed...
Abstract
This article discusses the most important factors required for cutoff methods. It explains the operations of machines used for the punching, shearing, notching, or coping of plates, bars, and structural sections. The article describes the effects of the blade angle and speed on the shear blade life. It reviews the design requirements and best practices for the production of blades. The article compares double-cut dies with single-cut dies used for shearing of structural and bar shapes. The shearing of specific forms, such as angle iron and flat stock, is also discussed. The article describes the advantages of hydraulic bar and structural shears. It concludes with information on the principle and construction of impact cutoff machines.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006703
EISBN: 978-1-62708-210-5
... unloaders, and heavy-duty structures. Available forms include sheet, plate, extrusions, rods, bars, and structural shapes. Mill product specifications include: Product form Standard Sheet, strip, and plate ASTM B 209, ASME SB209, ISO 6361, EN 485, JIS H 4000 (and QQ-A-250/9, QQ-A-250/20...
Abstract
This datasheet provides information on composition limits, mill product specifications, fabrication characteristics, processing effects on physical and mechanical properties, and applications of high-strength Al-Mg-Mn-Cr alloy 5456.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003040
EISBN: 978-1-62708-200-6
... as high a fiber volume fraction as filament winding, braids can assume more complex shapes (sharper curvatures) than filament-wound preforms. The interlaced nature of braids also provides a higher level of structural integrity, which is essential for ease of handling, joining, and damage resistance. While...
Abstract
Braiding is a textile process that is known for its simplicity and versatility. Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the braiding process and the mechanical properties of two-dimensional and three-dimensional braiding.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001483
EISBN: 978-1-62708-173-3
... and close-tolerance shapes. acetylene bars and structural shape close-tolerance cutting cutting equipment fuel gases heavy cutting light cutting medium cutting methylacetylene-propadiene-stabilized gas natural gas oxyfuel gas cutting OXYFUEL GAS CUTTING (OFC) includes a group of cutting...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC. In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural and close-tolerance shapes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003423
EISBN: 978-1-62708-195-5
...-processing advantages compared to thermoset composites. As a natural result of their structure, thermoplastic composites can be reformed into structural shapes after their initial consolidation. In addition, novel joining technologies such as induction welding are available for assembly operations...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Post-Processing and Assembly” ASM Handbook, Volume 21: Composites.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001486
EISBN: 978-1-62708-173-3
...) are used primarily for preparing structural shapes such as bars, angles, and T-bars. Like the shears used for plate and flat sheet, iron workers leave a square butt edge that may require further preparation for heavier sections before welding. The production shearing of bars and bar sections is usually...
Abstract
Mechanical cutting methods are widely used by the metal fabrication industry. This article introduces the welding fabricator to some of the mechanical equipment used to shape or prepare metals for welding. The most prevalent equipment used for mechanical cutting includes shears, iron workers, nibblers, and band saws. The article provides details on each of these.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
... of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings. casting solidification...
Abstract
This article provides a general introduction on casting processes and design techniques. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings.
1