Skip Nav Destination
Close Modal
Search Results for
structural grades of beryllium
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 215 Search Results for
structural grades of beryllium
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
... conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
...-220B 98.0 2.2 1000 1500 1500 800 800 400 I-400B 94.0 4.25 min 1600 2500 2500 800 800 400 Structural Grades Structural grades of beryllium are indicated by the prefix S in their designations. Property requirements for commercially available structural grades are presented...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
... and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium. aluminum-beryllium alloys beryllium alloys beryllium powder cold...
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005142
EISBN: 978-1-62708-186-3
... pulverizing a vacuum-cast ingot. The hot pressed block can be warm rolled to the desired sheet thickness. Unalloyed beryllium is available in two grades, I (instrument grade) and S (structural grade). Typical applications for instrument-grade beryllium include gyroscopes, components in inertial guidance...
Abstract
This article describes the effect of temperature, composition, strain rate, and fabrication history on the results obtained in the forming of beryllium as well as the safety measures required. It provides information on the equipment, tooling, dies, and workpieces used for forming beryllium. The article discusses the role of lubrication, blank development, tool designs, and strain rates, in deep drawing. It also provides information on the tooling and applications of three-roll bending, stretch forming, and spinning.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003770
EISBN: 978-1-62708-177-1
..., plating) and the undisturbed structure of the raw material. Age hardening of these beryllium-containing alloys by the parts fabricator can produce distinct changes in matrix etching response but does not alter the grain size or intermetallic compound particle distribution that is characteristic...
Abstract
The two major types of beryllium-containing alloys are copper-berylliums and nickel-berylliums. The most widely used beryllium-containing alloys are wrought copper-berylliums, which provide good strength while retaining useful levels of electrical and thermal conductivity. This article provides information on the specimen preparation procedures, macroexamination, microexamination, and microstructures of beryllium, copper-beryllium alloys, as well as nickel-beryllium alloys. It also discusses health and safety measures associated with the specimen preparation of beryllium and beryllium-containing alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
... oxide content. It is partially through the control of this oxide that the final properties of the beryllium are achieved. Them are structural, optical, and instrument grades of beryllium to permit design optimization. Other forms of beryllium sheet, plate, or extrusions are fabricated from the block...
Abstract
This article provides a discussion on filler metal selection, brazing procedures, and brazing equipment for brazing refractory metals. These include molybdenum, tungsten, niobium, and tantalum, and reactive metals. Commercially pure and alpha titanium alloys, alpha-beta alloys, zirconium alloys, and beryllium alloys are some reactive metals discussed in the article.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002191
EISBN: 978-1-62708-188-7
... of as-machined, annealed, and etched beryllium Table 2 Transverse tensile properties of as-machined, annealed, and etched beryllium Grade Condition Ultimate tensile strength 0.2% yield strength Yield point, MPa (ksi) Elongation, % MPa ksi MPa ksi S200E Before machining 366 53.1 227...
Abstract
This article discusses the properties of beryllium metals that require special attention when machining. It provides information on the considerations of S65 and selects 65 beryllium materials that are used for conducting tool wear studies and surface damage studies. The article highlights some of the precautions to be followed while machining beryllium metals. Information on the cutting oils, cutting tools, and speeds and feeds used in turning the beryllium are also provided. The article describes the chemical milling and photochemical machining methods that are used for etching beryllium components.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
...-centered cubic structure (i.e., ferrite). Ferritic stainless steels do not possess quite the strength and ductility of the austenitic grades. The 500 series is martensitic. The martensitic steels have the highest strength but also have the lowest toughness and ductility. Carbon in these martensitic grades...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003716
EISBN: 978-1-62708-182-5
... (As) … 5.72 … … Barium (Ba) … 3.66 … … Beryllium (Be) IF-1 foil grade 1.844 18.4 33.12 Bismuth (Bi) … 9.8 … … Cadmium (Cd) … 8.64 … … Calcium (Ca) Rolled 1.54 22 (a) 39.6 (a) Cerium (Ce) … 6.7 … … Cesium (Cs) … 1.89 … … Chromium (Cr) As-swaged 7.19...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
... hardness and conductivity are important in structural and consumable welding components Precipitation hardening is a critical attribute for the cast beryllium-copper alloys. Hardness, thermal conductivity, and castability are important in most of their applications. For example, they are used...
Abstract
Addition of beryllium, up to about 2 wt″, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics, production steps and physical metallurgy of beryllium-copper, beryllium-nickel, and beryllium-aluminum alloy, and tabulates their mechanical, electrical and physical properties, and temper designations. It describes the important features of this alloy group, including information on safe handling. Additionally, the article presents examples of the beneficial properties of beryllium-copper alloys and quantifies some of the major reasons for their selection for particular applications.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... Abstract This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
... 706 Zircaloy-2, Zircaloy-4, and grade 704 Physical Density at 20 °C (70 °F), g/cm 3 6.50 6.44 6.56 Crystal structure α-phase hcp (<865 °C, or 1590 °F) … hcp (<865 °C, or 1590 °F) β-phase bcc (>865 °C, or 1590 °F) bcc (>854 °C, or 1569 °F) bcc (>865 °C...
Abstract
Zirconium, hafnium, and titanium are produced from ore that generally is found in a heavy beach sand containing zircon, rutile, and ilmenite. This article discusses the processing methods of these metals, namely, liquid-liquid separation process, distillation separation process, refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred orientation, and the role of oxygen. It concludes by providing useful information on the applications of reactor and industrial grades of zirconium alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003149
EISBN: 978-1-62708-199-3
... and anisotropy that profoundly influences the engineering properties of zirconium and its alloys. Tables listing the values for chemical composition and tensile properties for nuclear and nonnuclear grades of zirconium are also provided. alloy grades corrosion resistance fabrication hafnium physical...
Abstract
This article discusses the general characteristics, primary and secondary fabrication methods, product forms, and corrosion resistance of zirconium and hafnium. It describes the physical metallurgy of zirconium and its alloys, providing details on allotropic transformation and anisotropy that profoundly influences the engineering properties of zirconium and its alloys. Tables listing the values for chemical composition and tensile properties for nuclear and nonnuclear grades of zirconium are also provided.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006090
EISBN: 978-1-62708-175-7
... heat is given off. Source: Ref 4 To obtain higher energy in solid propellants, metal powders such as aluminum, boron, or beryllium may be added. Beryllium, however, is not used currently because of toxicity problems. Solid propellants used in rocket propulsion systems are composite structures...
Abstract
The primary market for metal powder is the production of powder metallurgy (PM) parts, which are dominated primarily by iron and copper powders. This article reviews the chemical and pyrotechnics applications of ferrous and nonferrous powders. It describes the characteristics of iron powder used in oxygen scavengers and chemical reactive warmers and heaters. Metal powders used as fuels in solid propellants, pyrotechnic devices, explosives, and similar applications are reviewed. Atomized aluminum, magnesium, tungsten, and zirconium powders are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003181
EISBN: 978-1-62708-199-3
.... Formability The formability of beryllium is low compared with that of most other metals. Beryllium has a hexagonal close-packed (hcp) crystal structure; thus, there are relatively few slip planes, and plastic deformation is limited. For this reason, all beryllium products should be formed at elevated...
Abstract
This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys, nickel alloys, titanium alloys, and platinum metals. It discusses the formability, equipment and tooling, and lubricants used in the forming operations of these nonferrous metals.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
..., nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys. beryllium-copper alloys cast aluminum bronze cast beryllium...
Abstract
Bronzes generally are used to describe many different copper-base alloys in which the major alloying addition is neither zinc nor nickel. They are generally classified by their major alloying elements, for example, tin bronzes with phosphorus used as a deoxidizer, aluminum bronzes, nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
..., iron Filters for fuel, hydraulic fluids, air Bronze, stainless steel, nickel Hardware Aluminum, beryllium, titanium, iron Heat shields Beryllium, tungsten Heat shield coating Aluminum Jet engine components Superalloys Magnetic shields Aluminum, nickel, cobalt Measuring...
Abstract
Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas. This article reviews some of the diverse and emerging applications of ferrous and nonferrous powders. It also discusses the functions of copier powders and the processes used frequently for copier powder coating.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... 5.90 Chromium 4.75 8.31 Tin 2.53 4.43 Tin 3.46 6.06 Brass (sheet) 2.38 4.17 Titanium 3.09 5.41 Beryllium-copper 1.97 3.45 Brass (sheet) 2.87 5.02 Cadmium 1.68 2.94 Al-Cu alloy sheet 2.50 4.38 Phosphor bronze (ingot) 1.63 2.85 Beryllium-copper 2.23 3.90 18/8...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
..., nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
1