Skip Nav Destination
Close Modal
By
L.J. Hart-Smith, J.H. Gosse, S. Christensen
By
Mahmoud M. Farag
By
Daniel J. Benac
By
Daniel J. Benac
Search Results for
structural design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2610
Search Results for structural design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006486
EISBN: 978-1-62708-210-5
... Abstract Aluminum wrought products, castings, welds, and fasteners are used in many structural applications where they are required to safely support a load. It is useful to design aluminum structural components with its structural properties in mind from conceptualization rather than...
Abstract
Aluminum wrought products, castings, welds, and fasteners are used in many structural applications where they are required to safely support a load. It is useful to design aluminum structural components with its structural properties in mind from conceptualization rather than attempting to mimic components of other materials. This article discusses design specifications, design requirements and methods, and material properties used in aluminum structural design. These properties include tensile yield strength and tensile ultimate strength, welding, and ductility. The article describes various factors that affect the strength of two categories of aluminum structural components, namely members and connections. Design requirements for aluminum bolts, rivets, screws, and pins are provided. The article concludes with a discussion on the considerations for serviceability, namely deflections and vibrations.
Book Chapter
Characterizing Strength from a Structural Design Perspective
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
... composites matrix damage multidirectional laminates physics-based approach structural design THIS ARTICLE presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals...
Abstract
This article presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals and attributes of this method. The article then addresses the characterization of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix fails first, either by intent, by design error, or because of impact damage. The state of the modeling propagation and arrest of matrix damage follows. Comparisons of this physics-based approach are then made to empirically based failure theories.
Book Chapter
Design Considerations for Advanced Ceramics for Structural Applications
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... Abstract The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Image
Published: 30 September 2015
Image
Graded lattice structure designed in periodic lattices. Scaffold porosities...
Available to Purchase
in Stereolithographic Additive Manufacturing of Biological Scaffolds
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 9 Graded lattice structure designed in periodic lattices. Scaffold porosities were increased from 53% to 80% in volume fraction. Lattice proportions of length to diameter were modulated from 1.2 to 2.0 in aspect ratios.
More
Image
Published: 01 January 2006
Image
Comparison of typical design limits for rib-web structural forgings of alum...
Available to PurchasePublished: 01 January 2005
Fig. 1 Comparison of typical design limits for rib-web structural forgings of aluminum alloys (a) and nickel-base alloys (b). Dimensions given in millimeters
More
Image
Experimental data scatter and design curves associated with the structural ...
Available to PurchasePublished: 30 August 2021
Fig. 12 Experimental data scatter and design curves associated with the structural stress welded fatigue methodology. Adapted from Ref 45
More
Image
Influence of bolted joint design on structural efficiency of carbon/epoxy c...
Available to PurchasePublished: 01 January 2001
Fig. 33 Influence of bolted joint design on structural efficiency of carbon/epoxy composite structures
More
Book Chapter
Properties Needed for the Design of Static Structures
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002468
EISBN: 978-1-62708-194-8
... selection of a component or structure under static loading can be based on static strength and/or stiffness depending on the service conditions and the intended function. In the case of ductile materials, designs based on the static strength usually aim at avoiding yielding of the component. The manner...
Abstract
This article provides a schematic illustration of factors that should be considered in component design. It discusses the effect of component geometry on the behavior of materials and groups the main parameters that affect the value of the factor of safety. The article illustrates the estimation of probability of failure with an example. It reviews the designing and selection of materials for static strength and stiffness. The article also describes the causes of failure of engineering components, including design deficiencies, poor selection of materials, and manufacturing defects.
Book Chapter
Failure Prevention through Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Book Chapter
Failure Analysis and Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Image
Published: 01 December 2008
Image
Published: 30 June 2023
Image
(a) Computer-aided design model for the lattice structure. (b) Fabricated l...
Available to Purchase
in Additive Manufacturing of Titanium and Titanium Alloy Biomedical Devices
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 6 (a) Computer-aided design model for the lattice structure. (b) Fabricated lattice structure using laser powder-bed fusion. Reprinted from Ref 102 with permission from Elsevier
More
Image
Gross-section design stresses for bolted composite structures (carbon/epoxy...
Available to PurchasePublished: 01 January 2001
Fig. 36 Gross-section design stresses for bolted composite structures (carbon/epoxy laminates). Chart applicable for bolts up to 9.5 mm (37 in.) in diameter. Larger bolts are associated with progressively lower laminate stresses.
More
Image
Published: 01 January 2001
Image
Damage tolerance of a metallic structure based on initial design. Flaw size...
Available to PurchasePublished: 01 January 2001
Fig. 1 Damage tolerance of a metallic structure based on initial design. Flaw size (broken line) and residual strength (solid line) are plotted versus time.
More
Image
Damage tolerance of a composite structure based on initial design. Flaw siz...
Available to PurchasePublished: 01 January 2001
Fig. 3 Damage tolerance of a composite structure based on initial design. Flaw size (broken line) and residual strength (solid line) are plotted versus time. The step function nature of the curves represents large growths in the degradation associated with the highest load cycles in each block
More
Image
Published: 01 January 2001
1