Skip Nav Destination
Close Modal
Search Results for
structural alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2781
Search Results for structural alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002391
EISBN: 978-1-62708-193-1
... Abstract Structural alloys are commonly subjected to a variety of thermal and thermomechanical loads. This article provides an overview of the experimental methods in thermal fatigue (TF) and thermomechanical fatigue (TMF) and presents experimental results on the structural materials that have...
Abstract
Structural alloys are commonly subjected to a variety of thermal and thermomechanical loads. This article provides an overview of the experimental methods in thermal fatigue (TF) and thermomechanical fatigue (TMF) and presents experimental results on the structural materials that have been considered in TF and TMF research. Life prediction models and constitutive equations suited for TF and TMF are covered. The structural materials discussed include carbon steels, low-alloy steels, stainless steels, aluminum alloys, and nickel-base high-temperature alloys. The article explains crack initiation and crack propagation in TF and TMF. It describes thermal ratcheting and thermal shock behavior of structural metallic materials. The article concludes with information on life prediction of structural materials under TF and TMF.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002379
EISBN: 978-1-62708-193-1
... variables on fracture toughness of steels, aluminum alloys, and titanium alloys. aluminum alloys brittle matrix-ductile phase composites crack propagation fracture mechanics fracture resistance fracture toughness high-strength steel metal-matrix composites structural alloys titanium alloys...
Abstract
Fracture mechanics is a multidisciplinary engineering topic that has foundations in both mechanics and materials science. This article summarizes the microstructural aspect of fracture resistance in structural materials. It provides a discussion on basic fracture principles and schematically illustrates the mechanism of crack propagation. The article describes the fracture resistance of high-strength steels, aluminum alloys, titanium alloys, and composites such as brittle matrix-ductile phase composites and metal-matrix composites. It also lists the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Image
Published: 01 January 2000
Image
Published: 01 December 1998
Fig. 1 Comparison of structural alloys on the basis of (a) tensile strength and (b) specific tensile strength (tensile strength, in ksi, divided by density, in g/cm 3 )
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006733
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and applications of high-strength structural alloy 7050. fabrication characteristics high-strength structural alloy 7050...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and applications of high-strength structural alloy 7050.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006719
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and mechanical properties, product specifications, and applications of medium-strength structural aluminum alloy 6082. The fabrication characteristics of alloy 6082...
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and mechanical properties, product specifications, and applications of medium-strength structural aluminum alloy 6082. The fabrication characteristics of alloy 6082 are compared with related alloys and tempers.
Image
Published: 30 November 2018
Fig. 19 Composition ranges for verious structural aluminum die casting alloys, compared to iron solubility limit. Source: Ref 16
More
Image
Published: 15 June 2019
Fig. 2 Composition ranges for various structural aluminum die casting alloys compared to iron solubility limit. Source: Ref 19
More
Image
Published: 01 January 1997
Fig. 14 Interrupted oxidation of structural γ-TiAl alloys at 800 °C (1470 °F) in air. Alloys tested include: Ti-48Al-2Cr-2Nb (48-2-2); Ti-46-5Al-3Nb-2Cr-0.2W (K-5); and Ti-46Al-5Nb-1W (Alloy 7). Source: Ref 45
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006716
EISBN: 978-1-62708-210-5
... Abstract The general structural alloy 6061 is a balanced alloy containing silicon and magnesium in appropriate proportions to form magnesium silicide, which makes the alloy precipitation hardenable. This datasheet provides information on key alloy metallurgy, processing effects on physical...
Abstract
The general structural alloy 6061 is a balanced alloy containing silicon and magnesium in appropriate proportions to form magnesium silicide, which makes the alloy precipitation hardenable. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 6xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006737
EISBN: 978-1-62708-210-5
... is caused by heterogeneous precipitation of η phase (Al 3 Zn) on chromium-rich intermetallics. Alloy 7075 and other high strength 7 xxx alloys were introduced toward the end of the Second World War for aircraft structural parts and other highly stressed structural applications in their highest strength...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of 7075 series alloy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003728
EISBN: 978-1-62708-177-1
... of using heat treatment. Titanium is a transition metal with an incomplete d shell in its electronic structure, which enables it to form solid solutions with most substitutional elements having a size factor within ±20%. Alloying of titanium is dominated by the ability of elements to stabilize either...
Abstract
This article describes the development of heat-resistant titanium-base alloys and their classification into several microstructure categories based on their strengthening mechanisms. It explains the phase transformation in titanium-aluminum-base alloys and two peritectic reactions that take place in the titanium-aluminum system. The article also describes two approaches for controlling the orientation of the high-temperature alpha phase to achieve the required lamellar orientation by directional solidification in order to improve the strength and ductility of titanium-aluminum alloys. One approach is by seeding the alpha phase in the alloys, and the other is without seeding, by controlling the solidification path of alloys through appropriate alloying. The article discusses the grain refinement technique used to improve the ductility of cast titanium-aluminum alloys to a level of above 1" at room temperature and reasonable room temperature ductility in the as-cast condition. Finally, it provides information on the microstructures produced through various near-net shape manufacturing processes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003727
EISBN: 978-1-62708-177-1
... Abstract The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems...
Abstract
The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems in casting of alloys. The article also illustrates the casting defects such as macroporosity, microshrinkage, and surface defects, associated with the alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... the hydrostatic extrusion of structural alloys, composites, brittle materials, and intermetallics or intermetallic compounds, with examples. It concludes with a discussion on the attempts made to extend the hydrostatic extrusion to higher temperatures. brittle materials composites hot hydrostatic...
Abstract
This article begins with a general review of the effects of changes in stress state on processing of materials. It describes the fundamentals of hydrostatic extrusion and reviews the various issues and benefits associated with hydrostatic extrusion. The article discusses the hydrostatic extrusion of structural alloys, composites, brittle materials, and intermetallics or intermetallic compounds, with examples. It concludes with a discussion on the attempts made to extend the hydrostatic extrusion to higher temperatures.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... Abstract This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Image
Published: 01 December 2004
Fig. 23 Structure in U-3.8%Si alloy. (a) As-cast structure with U 3 Si 2 (brown) surrounded by a rim of U 3 Si (white) in a matrix of U-U 3 Si eutectic. (b) Same casting as shown in (a) but after heating for three days at 870 °C (1600 °F). U 3 Si twinned martensite is colored; untransformed U
More
Image
Published: 27 April 2016
Fig. 31 Structure in U-3.8%Si alloy. (a) As-cast structure with U 3 Si 2 (dark grey) surrounded by a rim of U 3 Si (white) in a matrix of U-U 3 Si eutectic. (b) Same casting as in (a) but after heating for three days at 870 °C (1600 °F). U 3 Si twinned martensite is colored; untransformed U 3
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... Abstract Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds...
Abstract
Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds and parent material in terms of thermal contraction, corrosion, and other factors must be considered. This article discusses these differences and describes the effect of these factors on the choice of the weld filler metal. It also provides a detailed discussion on the effects of cryogenic services on mechanical properties of the parent metal.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
... Abstract This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high...
Abstract
This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... Abstract This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known...
Abstract
This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known as microalloyed steels). The article places emphasis on HSLA steels, which are an attractive alternative in structural applications because of their competitive price per-yield strength ratios. HSLA steels are primarily hot-rolled into the usual wrought product forms and are furnished in the as-hot-rolled condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing and Materials (ASTM) specifications. The article also presents some applications of HSLA steels.
1