1-20 of 627 Search Results for

stress-rupture failure

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... Abstract This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects...
Image
Published: 01 June 2024
Fig. 25 Stress-rupture failure of an INCO 713C stress-rupture test bar that was loaded at 414 MPa (60,000 psi) and 816 °C (1500 °F) for 120 h. Thin-film oxidation of the fracture due to elevated-temperature exposure to air is apparent as the iridescent colors. The gradient in fracture surface More
Image
Published: 01 June 2024
Fig. 32 Stress-rupture failure in superheater tube resulting from creep damage. The superheater tube material was specified as ASTM A213 T11 low-alloy steel, but ASTM A192 carbon steel was installed instead. The pearlite in these tubes had transitioned to spheroidized carbides, and there were More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures...
Image
Published: 15 May 2022
Fig. 12 Schematic of Stage I, II, and III failures in stress rupture testing More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are often conducted on time-dependent failure mechanisms. The principal types of elevated-temperature failures are stress rupture, creep, low- or high-cycle fatigue, thermal fatigue, and coating degradation in gas turbines. For high-temperature tubing and piping components, embrittlement phenomena can occur...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
..., high-stress rupture has ductile appearance (see creep) Load exceeded the dynamic strength of the part Check for proper alloy and processing as well as proper toughness, grain size Loading direction may show failure was secondary or impact induced Low temperatures Cyclic stress...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 30 January 2024
DOI: 10.31399/asm.hb.v12.a0006842
EISBN: 978-1-62708-387-4
... fracture. Not surprisingly, elevated-temperature, stress-rupture failures are often, but not always, intergranular. However, at lower temperatures (less than approximately 40% of the alloy melting point in absolute temperature, Kelvin or Rankine), intergranular fracture is not the way metals normally fail...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001422
EISBN: 978-1-62708-173-3
..., which exhibit a very rapid age-hardening response. Because of the relaxation resistance of these alloys, the yield-strength-level stresses can result in short-time stress rupture failures. Preweld heat treatments, which put the material in a condition that promotes stress relaxation (generally...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
..., boiler tubes are also subjected to creep-rupture tests to evaluate their ability to withstand high temperatures under stress and thereby judge their useful remaining life. Chemical Analysis In a failure investigation, it is customary to carry out chemical analysis of the material on a routine...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007036
EISBN: 978-1-62708-387-4
... stresses from welding, are a common factor in SOHIC but not in standard HIC ( Ref 3 ). Creep and Stress Rupture Creep damage and the stress-rupture failure mechanism in carbon and alloy steel components result from sustained tensile stress at elevated temperatures. For creep damage, the material...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis. boilers corrosion embrittlement erosion failure...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples. brittle fracture composite creep rupture ductile fracture fabrication failure analysis fatigue...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... in transparency Creep-rupture from constant load (creep) Odor development Chemical or environmental stress cracking (ESC) Loss of adhesion Loss of mechanical seal (stress-relaxation) Shrinkage/warpage Cracking from cyclic loading (fatigue) Once the type of failure needing to be assessed...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001352
EISBN: 978-1-62708-173-3
...-stress failures. Figure 9 shows a comparison between the rupture time versus effective (von Mises) stress behavior in shear ( Ref 26 ) (at torsional stresses less than the maximum of HHC-deposited-silver interlayers), compared with that of tension ( Ref 17 ) (calculated using FEM analyses of PM sputter...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
..., such as aluminum, copper, and silver ( Ref 38 ), show a saturation in the flow stress. This fact is important because such saturations imply constant torque, or time-dependent, shear-stress failures. Figure 9 shows a comparison between the rupture time versus effective (von Mises) stress behavior in shear ( Ref...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... assessment to help reduce the likelihood of failure- in this case, ruptures and leaks. When pipeline failures do occur, the results can be catastrophic for people, the environment, and industry. Thus, understanding the causes of pipeline failures and their prevention is of great importance to our society...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... method, one of the most common to describe the material deformation and rupture time, is also discussed. Burgers power-law model creep failure Findley power-law model Larson-Miller parametric method material deformation polymers rupture time service life stress relaxation time-stress...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... the stress is changing), and time to failure (often referred to as rupture life). This latter measurement was of special significance because it became a basis for design against part failure, and later as a basis for estimating remaining life of operating components. There thus emerged a framework...