Skip Nav Destination
Close Modal
Search Results for
stress-rupture failure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 627 Search Results for
stress-rupture failure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... Abstract This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Image
Published: 01 June 2024
Fig. 25 Stress-rupture failure of an INCO 713C stress-rupture test bar that was loaded at 414 MPa (60,000 psi) and 816 °C (1500 °F) for 120 h. Thin-film oxidation of the fracture due to elevated-temperature exposure to air is apparent as the iridescent colors. The gradient in fracture surface
More
Image
Published: 01 June 2024
Fig. 32 Stress-rupture failure in superheater tube resulting from creep damage. The superheater tube material was specified as ASTM A213 T11 low-alloy steel, but ASTM A192 carbon steel was installed instead. The pearlite in these tubes had transitioned to spheroidized carbides, and there were
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Image
in Service Lifetime Assessment of Polymeric Products
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are often conducted on time-dependent failure mechanisms. The principal types of elevated-temperature failures are stress rupture, creep, low- or high-cycle fatigue, thermal fatigue, and coating degradation in gas turbines. For high-temperature tubing and piping components, embrittlement phenomena can occur...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
..., high-stress rupture has ductile appearance (see creep) Load exceeded the dynamic strength of the part Check for proper alloy and processing as well as proper toughness, grain size Loading direction may show failure was secondary or impact induced Low temperatures Cyclic stress...
Abstract
Identification of the fracture mechanism is one of the principal responsibilities of a failure analyst and is an important component of any root-cause analysis. This article explores the varied mechanisms responsible for metal fracture, particularly regarding fractography. The behavior of engineering materials at fracture is based on a large number of interrelated characteristics from the atomic level to the component level. These characteristics range from ductile to brittle at the microscale and macroscale levels. Fundamental relative ductility results from the type of electronic bonding, the crystal structure, and the broader long-range degree of order. It provides detailed discussion on ductile fracture, brittle fracture, mixed fracture, embrittlement, stress-corrosion cracking.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 30 January 2024
DOI: 10.31399/asm.hb.v12.a0006842
EISBN: 978-1-62708-387-4
... fracture. Not surprisingly, elevated-temperature, stress-rupture failures are often, but not always, intergranular. However, at lower temperatures (less than approximately 40% of the alloy melting point in absolute temperature, Kelvin or Rankine), intergranular fracture is not the way metals normally fail...
Abstract
This article addresses macroscale fracture appearances, microscale fracture-surface appearances or morphologies, fracture mechanisms, and those factors that influence fractures and fracture appearances. Some of the macroscopic and microscopic features identified by the failure analyst to evaluate the fracture surfaces of metals and plastics are described and compared.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001422
EISBN: 978-1-62708-173-3
..., which exhibit a very rapid age-hardening response. Because of the relaxation resistance of these alloys, the yield-strength-level stresses can result in short-time stress rupture failures. Preweld heat treatments, which put the material in a condition that promotes stress relaxation (generally...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
..., boiler tubes are also subjected to creep-rupture tests to evaluate their ability to withstand high temperatures under stress and thereby judge their useful remaining life. Chemical Analysis In a failure investigation, it is customary to carry out chemical analysis of the material on a routine...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007036
EISBN: 978-1-62708-387-4
... stresses from welding, are a common factor in SOHIC but not in standard HIC ( Ref 3 ). Creep and Stress Rupture Creep damage and the stress-rupture failure mechanism in carbon and alloy steel components result from sustained tensile stress at elevated temperatures. For creep damage, the material...
Abstract
In this article, a basic summary of fracture mechanisms in carbon and alloy steels is presented, along with numerous examples of these fractures. These examples include ductile fracture, brittle cleavage fracture, intergranular fracture, fatigue fracture, and environmentally assisted failure mechanisms.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis. boilers corrosion embrittlement erosion failure...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples. brittle fracture composite creep rupture ductile fracture fabrication failure analysis fatigue...
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... in transparency Creep-rupture from constant load (creep) Odor development Chemical or environmental stress cracking (ESC) Loss of adhesion Loss of mechanical seal (stress-relaxation) Shrinkage/warpage Cracking from cyclic loading (fatigue) Once the type of failure needing to be assessed...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001352
EISBN: 978-1-62708-173-3
...-stress failures. Figure 9 shows a comparison between the rupture time versus effective (von Mises) stress behavior in shear ( Ref 26 ) (at torsional stresses less than the maximum of HHC-deposited-silver interlayers), compared with that of tension ( Ref 17 ) (calculated using FEM analyses of PM sputter...
Abstract
Soft-interlayer solid-state welds that join stronger base metals have unique mechanical properties that are of fundamental interest and may be of critical importance to designers. This article discusses the mechanical properties of soft-interlayer solid-state welds and the implications of these behaviors to service stress states and environments. It describes the tensile loading of soft-Interlayer welds in terms of the effect of interlayer thickness on stress, interlayer strain, time-dependent failure, effect of base-metal properties, and effect of interlayer fabrication method. The article concludes with a discussion on multiaxial loading.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
..., such as aluminum, copper, and silver ( Ref 38 ), show a saturation in the flow stress. This fact is important because such saturations imply constant torque, or time-dependent, shear-stress failures. Figure 9 shows a comparison between the rupture time versus effective (von Mises) stress behavior in shear ( Ref...
Abstract
This article discusses the mechanical properties of soft-interlayer solid-state welds and the implications of these behaviors to service stress states and environments. It illustrates the microstructure of as-deposited coatings and solid-state-welded interlayers. The article reviews factors that affect the tensile loading of strength of soft-interlayer welds: the interlayer thickness, the interlayer strain, and the interlayer fabrication method. It also provides information on stress-corrosion cracking of interlayers and stress behavior of these interlayers during shear and multiaxial loading.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... assessment to help reduce the likelihood of failure- in this case, ruptures and leaks. When pipeline failures do occur, the results can be catastrophic for people, the environment, and industry. Thus, understanding the causes of pipeline failures and their prevention is of great importance to our society...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... method, one of the most common to describe the material deformation and rupture time, is also discussed. Burgers power-law model creep failure Findley power-law model Larson-Miller parametric method material deformation polymers rupture time service life stress relaxation time-stress...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... the stress is changing), and time to failure (often referred to as rupture life). This latter measurement was of special significance because it became a basis for design against part failure, and later as a basis for estimating remaining life of operating components. There thus emerged a framework...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
1