Skip Nav Destination
Close Modal
Search Results for
stress-relaxation characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 365 Search Results for
stress-relaxation characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Effects of Composition, Processing, and Structure on Properties of Nonferrous Alloys
> Materials Selection and Design
Published: 01 January 1997
Fig. 3 Tensile-stress-relaxation characteristics of copper alloy C11000. Data are for tinned 30 AWG (0.25 mm diam) annealed ETP copper wire; initial elastic stress, 89 MPa (13 ksi).
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001066
EISBN: 978-1-62708-162-7
... stress-relaxation characteristics of copper alloys. copper cable copper sheet copper strip copper tubular products copper wire manufacturing processes stress-relaxation characteristics wrought copper wrought copper alloys COPPER AND COPPER ALLOYS are produced in various mill-product...
Abstract
Wrought copper and copper alloys are produced in various mill-product forms for a variety of applications due to their high electrical conductivity, corrosion resistance, ease of fabrication, and good heat-transfer properties. This article describes the manufacturing processes used to produce wrought copper and copper alloys in the form of sheet and strip products, tubular products, and wire and cable. Common processes include melting, casting, hot and cold rolling, milling or scalping, annealing, cleaning, slitting, cutting, and leveling. In addition, the article discusses stress-relaxation characteristics of copper alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
... metals, stress relaxation in a given time period is inversely proportional to absolute temperature ( Ref 1 ). Fig. 4 Tensile-stress-relaxation characteristics of C11000. Data are for tinned 30 AWG (0.25 mm diam) annealed ETP copper wire; initial elastic stress, 89 MPa (13 ksi). The stress...
Abstract
Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures. This article is a collection of curves and tables that present data on thermal softening and stress-relaxation in copper and copper alloys. Thermal softening occurs over extended periods at temperatures lower than those inducing recrystallization in commercial heat treatments. Stress relaxation occurs because of the transformation of elastic strain in the material to plastic, or permanent strain.
Image
Published: 01 January 2000
Fig. 1 Characteristic behavior during loading period in a stress relaxation test. (a) Constant strain rate. (b) Constant load rate. Source: Ref 11
More
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006278
EISBN: 978-1-62708-169-6
... characteristics of copper. The article also discusses the tensile-stress-relaxation behavior of selected types of copper wires. annealing copper copper wire recrystallization strengthening stress relaxation COMMERCIAL COPPERS contain at least 99.3% Cu with minor alloying elements and/or residual...
Abstract
Cast and wrought coppers can be strengthened by cold working. This article provides information on minor alloying elements, such as beryllium, silicon, nickel, tin, zinc, and chromium, used to strengthen copper. It details annealing and recrystallization and grain growth characteristics of copper. The article also discusses the tensile-stress-relaxation behavior of selected types of copper wires.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
...Abstract Abstract This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
...Abstract Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
.... Fig. 2 Typical stress-strain curves for polycrystalline aluminum and semicrystalline polyethylene. Both materials neck. In polyethylene, chain alignment results in stiffening just before failure. The postyield deformation described above involves shear deformation. One characteristic of shear...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002396
EISBN: 978-1-62708-193-1
... or induction-hardened components are often found to initiate below the surface. Fig. 27 Typical residual stress patterns obtained by shot peening (a) and induction hardening (b) Cycle-Dependent Stress Relaxation It is common to assess residual stress effects on fatigue by treating them as mean...
Abstract
This article reviews general trends in the cyclic response for representative commercial alloys to establish the spectrum of cyclic properties attainable through microstructural alteration. Individual alloy classes are examined in detail to assess the understanding of relationships between microstructure and fatigue resistance. These alloys classes include ferritic-pearlitic alloys, martensitic alloys, maraging steels, and metastable austenitic alloys. The article also discusses the role of internal defects and selective surface processing in influencing fatigue performance.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001422
EISBN: 978-1-62708-173-3
... with the aluminum/titanium-hardened alloys, which exhibit a very rapid age-hardening response. Because of the relaxation resistance of these alloys, the yield-strength-level stresses can result in short-time stress rupture failures. Preweld heat treatments, which put the material in a condition that promotes stress...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005506
EISBN: 978-1-62708-197-9
...Abstract Abstract This article summarizes many approaches that are used to simulate relaxation of bulk residual stresses in components. It presents analytical examples to highlight the complexity of residual stress and strain distributions observed in simple geometries, with ideal material...
Abstract
This article summarizes many approaches that are used to simulate relaxation of bulk residual stresses in components. It presents analytical examples to highlight the complexity of residual stress and strain distributions observed in simple geometries, with ideal material behavior and trivial loading and boundary conditions. The article discusses approximate and advanced solution techniques that can be employed in practice for simulation of residual stress relief: finite-difference method and finite-element method. It also describes advanced techniques applicable to transient creep, advanced constitutive models, and complicated stress and temperature loading histories.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006672
EISBN: 978-1-62708-213-6
... transitions as a function of temperature (or time) under controlled atmospheric conditions. Differential scanning calorimetry has been used to study thermodynamic processes (glass transition, heat capacity) and kinetic events such as cure and enthalpic relaxations associated with physical aging or stress...
Abstract
Differential scanning calorimetry (DSC) is the most common thermal technique for polymer characterization. This article provides a detailed account of the various factors and processes involved in DSC. The discussion covers the equipment used, specimen preparation process, calibration requirements, data analysis, and provides examples of the applications and interpretation of DSC.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006676
EISBN: 978-1-62708-213-6
... and viscoelastic behavior Polymer structure and morphology Primary and secondary relaxation behavior Crystallization processes Influence of fillers in polymers In DMA, the sample is subjected to a periodic stress in one of several different modes of deformation (bending, tension, shear...
Abstract
Dynamic mechanical analysis (DMA) is a powerful tool for studying the viscoelastic properties and behavior of a range of materials as a function of time, temperature, and frequency. This article describes various systems and equipment used in DMA setup and discusses the processes involved in preparation of test specimen for DMA measurements. Some factors to be considered when calibrating the DMA instrument are provided, along with a description on processes for interpreting the temperature and frequency dependence of DMA curves as well as the applications of DMA.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001238
EISBN: 978-1-62708-170-2
..., especially at high temperature, and residual stresses of the samples had more effect on fatigue resistance than surface hardening does. Stress Relaxation Stress relaxation can be a finishing operation per se. Reference 18 describes a variety of thermal and/or mechanical operations can be applied...
Abstract
The concept of surface integrity for grinding operations can be extended to encompass six different groups of key factors: visual, dimensional, residual stress, tribological, metallurgical, and others. This article discusses the importance of these factors in the performance and behavior of finishing methods in various manufactured parts. Special emphasis is given to residual stresses and their influence on the final mechanical properties of a manufactured part.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical...
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... (0.08 in.) hole. X-ray diffraction residual-stress measurements at locations where access is a problem normally require sectioning of the component to access the location of interest and, in general, require the evaluation of applied stresses caused by the relaxation due to sectioning. The most common...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... as a neutral line, hence satisfying two more objectives. Highs, lows, flattening, overcrowning, twist, and size variation are all aspects of springback resulting from the elastic straining (i.e., shrinkage) that results from the relaxation of the forming stresses. The designer should review the forming...
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... of only one using XRD residual-stress analysis can be risky, because it may inadequately represent the statistical distribution of residual stresses in the component population. Components that have already failed may be of limited use, because residual stresses may have changed or relaxed considerably...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.