Skip Nav Destination
Close Modal
Search Results for
stress-cracking corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 433 Search Results for
stress-cracking corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... Abstract This article describes some of the mechanical/ electrochemical phenomena related to the in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF...
Abstract
This article describes some of the mechanical/ electrochemical phenomena related to the in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses the key issues related to simulation of the in vivo environment, service conditions, and data interpretation. Theses include frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article describes the fundamentals of CF and SCC, testing methodology, and test findings from laboratory, in vivo, and retrieval studies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Abstract Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003837
EISBN: 978-1-62708-183-2
... influencing kinetics, stress-cracking corrosion, and hydrogen embrittlement of aqueous corrosion. It also explains the practical issues dealing with the corrosion problems. aqueous corrosion corrosion high-temperature corrosion hot corrosion hydrogen embrittlement oxidation silicides stress...
Abstract
This article reviews the corrosion behavior of intermetallics for the modeling of the corrosion processes and for devising a strategy to create corrosion protective systems through alloy and coating design. It discusses the high-temperature corrosion properties of intermetallics and aqueous corrosion properties. Thermodynamic principles in the context of high-temperature corrosion and information on oxidation; sulfidation; hot corrosion of NiAl-, FeAl-, and TiAl-based intermetallics; and silicides are included. The article explores the thermodynamic consideration, ordering influencing kinetics, stress-cracking corrosion, and hydrogen embrittlement of aqueous corrosion. It also explains the practical issues dealing with the corrosion problems.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
... various corrosion products of iron and steel have a larger specific volume than the steel itself. The increase in volume of the corrosion products causes stresses that can lead to cracks in the concrete. These cracks allow easier access for the attacking medium and therefore more rapid attack. When the...
Abstract
Corrosion of metals is defined as deterioration caused by chemical or electrochemical reaction of the metal with its environment. This article provides information on corrosion of iron and steel by aqueous and nonaqueous media. It discusses the corrosive environments of carbon and alloy steels, namely atmospheric corrosion, soil corrosion, corrosion in fresh water and seawater. The article describes the corrosion process in concrete, which tends to create conditions that increase the rate of attack. The focus is on the stress-corrosion cracking of steels; an environmentally induced crack propagation that results from the combined interaction of mechanical stress and corrosion reactions. The article tabulates a guide on corrosion prevention for carbon steels in various environments. It also discusses protection methods of steel from corrosion, including coatings, such as temporary protection, cleaning, hot dip coating, electroplating, thermal spray coatings, conversion coatings, thin organic coatings, and inhibitors.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... Abstract Stress-corrosion cracking (SCC) occurs under service conditions, which can result, often without any prior warning, in catastrophic failure. Hydrogen embrittlement is distinguished from stress-corrosion cracking generally by the interactions of the specimens with applied currents. To...
Abstract
Stress-corrosion cracking (SCC) occurs under service conditions, which can result, often without any prior warning, in catastrophic failure. Hydrogen embrittlement is distinguished from stress-corrosion cracking generally by the interactions of the specimens with applied currents. To determine the susceptibility of alloys to SCC and hydrogen embrittlement, several types of testing are available. This article describes the constant extension testing, constant load testing, constant strain-rate testing for smooth specimens and precracked or notched specimens of SCC. It provides information on the cantilever beam test, wedge-opening load test, contoured double-cantilever beam test, three-point and four-point bend tests, rising step-load test, disk-pressure test, slow strain-rate tensile test, and potentiostatic slow strain-rate tensile test for hydrogen embrittlement.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006007
EISBN: 978-1-62708-172-6
... No reported cases of stress-corrosion cracking of pipe coated with FBE ( Ref 12 ) Resistance to biological attack This section discusses problems and solutions for FBE external pipe coatings, girth weld FBE application, FBE custom coatings, internal FBE pipe...
Abstract
Functional fusion-bonded epoxy (FBE) coatings are used as external pipe coatings, base layer for three-layer pipe-coating systems, internal pipe linings, and corrosion coatings for concrete reinforcing steel (rebar). This article provides information on the chemistries of FBE, and discusses the application procedures for internal and external FBE pipe coating. The procedures involve pipe inspection, surface preparation, heating, powder application, curing, cooling, coating inspection, and repairing. It describes the problems and solutions for FBE external pipe coatings, girth weld FBE application, FBE custom coatings, internal FBE pipe linings, and FBE rebar coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003834
EISBN: 978-1-62708-183-2
... steel to be used as a bullet jacket with improved strength, aerodynamics, and resistance to stress-corrosion cracking. Clad metals designed for corrosion control can be categorized according to the following systems: Noble metal clad systems Corrosion barrier systems Sacrificial metal...
Abstract
This article describes the principal cladding processes and methods for calculating properties of clad metals. It reviews the designing processes of clad metals to achieve specific requirements. The article discusses six categories of clad metal systems designed for corrosion control: noble metal clad systems, corrosion barrier systems, sacrificial metal systems, transition metal systems, complex multilayer systems, and clad diffusion alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... Abstract This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and...
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
... hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003816
EISBN: 978-1-62708-183-2
...-corrosion cracking in various industrial and chemical environments. It concludes with a discussion on various corrosion testing methods, including aqueous corrosion testing, dynamic corrosion tests, and stress-corrosion testing. aqueous corrosion testing copper copper alloys dynamic corrosion tests...
Abstract
This article discusses the identifying characteristics of the forms or mechanisms of corrosion that commonly attack copper metals, as well as the most effective means of combating each. It tabulates corrosion ratings of wrought copper alloys in various corrosive media. The article describes the corrosion behavior of copper alloys in specific environments. It reviews the corrosion characteristics of copper and copper alloys in various acids, alkalis, salts, organic compounds, and gases. The article provides information on the behavior of copper alloys that is susceptible to stress-corrosion cracking in various industrial and chemical environments. It concludes with a discussion on various corrosion testing methods, including aqueous corrosion testing, dynamic corrosion tests, and stress-corrosion testing.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
... Abstract This article focuses on the various forms of corrosion occurred in the passive range of aluminum and its alloys, namely, pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion...
Abstract
This article focuses on the various forms of corrosion occurred in the passive range of aluminum and its alloys, namely, pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion-corrosion, atmospheric corrosion, filiform corrosion, and corrosion in water and soils. It discusses the effects of composition, microstructure, stress-intensity factor, and nonmetallic building materials on the corrosion behavior of aluminum and its alloys. The article also describes the corrosion resistance of anodized aluminum in contact with foods, pharmaceuticals, and chemicals.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... metallurgical factors protective coatings stress-corrosion cracking THE CORROSION RESISTANCE of a magnesium or a magnesium alloy part depends on many of the same factors that are critical to other metals. However, because of the electrochemical activity of magnesium ( Table 1 ), the relative importance...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003130
EISBN: 978-1-62708-199-3
... aluminum alloys, including pitting corrosion, intergranular corrosion, exfoliation corrosion, galvanic corrosion, stray-current corrosion, deposition corrosion, crevice corrosion, filiform corrosion, stress-corrosion cracking, corrosion fatigue, and hydrogen embrittlement. The article also presents a short...
Abstract
This article discusses the corrosion resistance of aluminum and aluminum alloys in various environments, such as in natural atmospheres, fresh waters, seawater, and soils, and when exposed to chemicals and their solutions and foods. It describes the forms of corrosion of aluminum and aluminum alloys, including pitting corrosion, intergranular corrosion, exfoliation corrosion, galvanic corrosion, stray-current corrosion, deposition corrosion, crevice corrosion, filiform corrosion, stress-corrosion cracking, corrosion fatigue, and hydrogen embrittlement. The article also presents a short note on aluminum clad products and corrosion at joints.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
..., including hydrogen embrittlement and stress-corrosion cracking. hydrogen embrittlement stress-corrosion cracking liquid phase quenching transition metal-metal binary alloys transition metal-metalloid alloys amorphous simple metal-transition metal-rare earth metal alloys AMORPHOUS, or glassy...
Abstract
This article illustrates the three techniques for producing glassy metals, namely, liquid phase quenching, atomic or molecular deposition, and external action technique. Devitrification of an amorphous alloy can proceed by several routes, including primary crystallization, eutectoid crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including hydrogen embrittlement and stress-corrosion cracking.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003812
EISBN: 978-1-62708-183-2
... of composition, processing, design, fabrication, and external treatments on the corrosion of stainless steels. Various forms of corrosion, namely, general, galvanic, pitting, crevice, intergranular, stress-corrosion cracking, erosion-corrosion, and oxidation, are reviewed. Corrosion testing for...
Abstract
This article provides an overview of the identification systems for various grades of wrought stainless steels, namely, the American Iron and Steel Institute numbering system, the Unified Numbering System, and proprietary designations. It elaborates on five major families of stainless steels, as defined by the crystallographic structure. These include ferritic stainless steels, austenitic stainless steels, martensitic stainless steels, and precipitation-hardening stainless steels. The mechanism of corrosion protection for stainless steels is reviewed. The article examines the effects of composition, processing, design, fabrication, and external treatments on the corrosion of stainless steels. Various forms of corrosion, namely, general, galvanic, pitting, crevice, intergranular, stress-corrosion cracking, erosion-corrosion, and oxidation, are reviewed. Corrosion testing for; corrosion in atmosphere, water, and chemical environments; and the applications of stainless steels in various industries are also discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
..., microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic...
Abstract
This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium, are reviewed. The article provides information on classes of the cast irons based on corrosion resistance. It describes the various forms of corrosion in cast irons, including graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic parameters to be considered before selecting the cast irons for corrosion services.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
... and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for...
Abstract
Titanium alloys are often used in highly corrosive environments because they are better suited than most other materials. The excellent corrosion resistance is the result of naturally occurring surface oxide films that are stable, uniform, and adherent. This article offers explanations and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for expanding the useful application range for titanium and includes a comprehensive overview of available corrosion data.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003137
EISBN: 978-1-62708-199-3
... attack copper metals as well as the most effective means of combating each. General corrosion, galvanic corrosion, pitting, impingement, fretting, intergranular corrosion, dealloying, corrosion fatigue, and stress-corrosion cracking (SCC) are some forms of corrosion. The article also lists a galvanic...
Abstract
Copper and copper alloys are widely used in many environments and applications because of their excellent corrosion resistance, which is coupled with combinations of other desirable properties. This article lists the identifying characteristics of the forms of corrosion that commonly attack copper metals as well as the most effective means of combating each. General corrosion, galvanic corrosion, pitting, impingement, fretting, intergranular corrosion, dealloying, corrosion fatigue, and stress-corrosion cracking (SCC) are some forms of corrosion. The article also lists a galvanic series of metals and alloys valid for dilute aqueous solutions, such as seawater and weak acids. It provides useful information on the effects of alloy compositions, selection for specific environments, and atmospheric corrosion of selected copper alloys. The article also tabulates the corrosion ratings of wrought copper alloys in various corrosive media.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Abstract High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... Abstract The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and...
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It examines how quench-induced residual stresses in heat treatable aluminum alloys are reduced when sufficient load is applied to cause plastic deformation. The article also shows how plastic deformation reduces residual stress.