Skip Nav Destination
Close Modal
Search Results for
stress relaxation testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 455 Search Results for
stress relaxation testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003286
EISBN: 978-1-62708-176-4
... Abstract This article provides the theoretical background for understanding many of the physical processes relevant to mechanical testing methods, experimental results, and analytical approaches described in this volume. creep testing stress-relaxation testing creep deformation Stress...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
... Abstract This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Fig. 1 Characteristic behavior during loading period in a stress relaxation test. (a) Constant strain rate. (b) Constant load rate. Source: Ref 11
More
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Fig. 16 Application of load during a stress-relaxation test of a helical compression spring at room temperature. Original free length, L 0 , compressed length, L 1 ; free length upon release from load at temperature, L 2 ; permanent set, Δ L
More
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
.... The article presents other testing considerations and concludes with information on stress relaxation testing. creep testing creep-rupture testing creep properties rupture strength constant-load testing constant-stress testing stress relaxation testing extensometers heat-treating furnaces...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
...-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them. compression testing fatigue testing formability testing fracture testing hardness...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Image
Published: 01 January 1997
Fig. 31 Comparison of predicted time to 0.5% creep based on stress-relaxation measurements at 650 °C (1200 °F) for an austenitic iron-base alloy with measurements made on conventional creep tests. SRT, stress-relaxation tests
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005133
EISBN: 978-1-62708-186-3
... in age formability with aging may be observed in Fig. 2 . Here, the stress relaxation curves for alloy 7055 given four different initial treatments prior to a stress relaxation test are presented. The stress drop shown in Fig. 2 is the difference between the initial applied stress and the stress...
Abstract
Compared to cold-formed parts, age-formed parts have lower residual stresses and consequently better stress corrosion resistance. This article addresses the technical issues that arise in the investigations of creep in precipitate-strengthened materials. The issues addressed help in developing alloys and tempers particularly suited for the age-forming process. The different steps involved in the program for predicting the final part shape are discussed. These basic steps involve developing mechanical tests to study creep at low temperatures and low stresses, describing low-temperature creep in terms of a constitutive model, and then using the constitutive model in a process model or finite element analysis to predict the final part shape.
Image
Published: 01 January 2000
Fig. 3 Derivation of stress-relaxation curve for step-down creep test. (a) Constant extension approximated by a step-down creep test. (b) Stress-time relation
More
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Fig. 10 Stress-relaxation bend test specimen and spheromometer in four-point loaded beam with uniform cross-section
More
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Image
Published: 01 January 1997
Fig. 28 Insensitivity of creep strength of IN738 to various thermal exposures as determined from stress versus creep-rate behavior calculated from stress-relaxation tests. Source: Ref 92
More
Image
Published: 01 January 1997
Fig. 29 Embrittlement of IN738 with increasing severity of exposure in air demonstrated in constant displacement rate (4 × 10 −5 mm/s) tensile tests at 800 °C (1470 °F). SRT, stress-relaxation tests. AC, air cooled. Source: Ref 95
More
Image
Published: 01 January 1997
Fig. 6 Recovery of creep strain in silicon nitride at 1200 °C (2190 °F) after unloading from a stress-relaxation test started at 300 MPa (43.5 ksi), showing a time to the one-third dependence
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... of constant strain is the basis of typical stress relaxation testing, in which the relaxation modulus function can be empirically measured by testing a plastic at constant temperature, measuring the force with respect to time to maintain constant strain and fitting the data to the relaxation modulus given...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots. creep curve creep testing elevated-temperature life assessment heater tubes high-temperature components hydrogen attacks remaining-life...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
1