Skip Nav Destination
Close Modal
Search Results for
stress measurement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2200
Search Results for stress measurement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... Abstract This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... Abstract X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003329
EISBN: 978-1-62708-176-4
... Abstract This article discusses the need of and the strain basis for residual stress measurements and describes the nature of residual stress fields. A generic destructive stress relief procedure is described along with the issues generally involved in each procedural step. The article presents...
Abstract
This article discusses the need of and the strain basis for residual stress measurements and describes the nature of residual stress fields. A generic destructive stress relief procedure is described along with the issues generally involved in each procedural step. The article presents the stress reconstruction equations to be used for computational reconstruction of the stress fields from the measured strains for the destructive methods. It provides information on the sectioning, material removal, strain measurement, and chemical methods of residual stress measurement. The article reviews the semidestructive methods of residual stress measurement: blind hole drilling and ring coring, spot annealing, and X-ray diffraction techniques. Nondestructive methods such as neutron diffraction, ultrasonic velocity, and magnetic Barkhausen noise techniques, are also discussed.
Image
Published: 01 January 1994
Fig. 1 Stress measurement techniques. (a) Bending of cantilever beam. (b) Disk deflection. Source: Ref 7
More
Image
Published: 01 January 1986
Fig. 1 Principles of x-ray diffraction stress measurement. (a)ψ = 0. (b)ψ = ψ (sample rotated through some known angle ψ). D, x-ray detector; S, x-ray source; N, normal to the surface
More
Image
Published: 01 January 2000
Fig. 4 Residual stress measurement of a girth welded pipe by strain gaging and sectioning. Note that strain gages shown in the final sectioning should be placed on the pipe prior to initial sectioning. For a more complete analysis, several of the layer sections detailed in the final sectioning
More
Image
Published: 01 August 2018
Fig. 4 Schematic of uniaxial stress measurement using a linearly polarized shear wave electromagnetic acoustic transducer (EMAT) in a platelike component
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 37 Visualization of surface residual hoop stress measurement data (averaged from 10° to 350°) vs. distance from the edge of a split sleeve cold expanded hole (split centered at 0°).
More
Image
Published: 15 December 2019
Fig. 1 Principles of x-ray diffraction residual-stress measurement. D, x-ray detector; S, x-ray source; N , normal to the surface. (a) Ψ = 0: Poisson’s ratio contraction of lattice spacing. (b) Ψ > 0: Tensile extension of lattice planes by stress σ
More
Image
Published: 01 February 2024
Fig. 22 Schematic showing the geometric setup of XRD residual stress measurement. Source: Ref 134
More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005508
EISBN: 978-1-62708-197-9
... and is useful primarily for the specific material condition/microstructure and deformation regime in which actual measurements have been made. Alternatively, flow stress models can be based on so-called internal state variables such as dislocation density, grain size, phase fraction, strain rate...
Abstract
This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect of deformation heating on flow stress. It provides metallurgical considerations at hot working temperatures and presents flow curves at conventional metalworking strain rates. The article describes the effect of microstructural scale, crystallographic texture, and equiaxed phases on flow stress at hot working temperatures. It tabulates a summary of certain values describing the flow stress-strain rate relation for steels, aluminum alloys, copper alloys, titanium alloys, and other metals at various temperatures.
Image
Published: 01 June 2016
Fig. 10 Residual stresses measured by a neutron diffraction technique in a U-0.8Ti alloy cylinder. (a) After a gamma solution heat treatment and water immersion quench, a biaxial stress state is observed with very large surface compressive and interior tensile residual stresses. (b) Aging
More
Image
Published: 09 June 2014
Fig. 41 Residual compressive stress measurements for contour-hardened and carburized gears from the Gear Research Institute study. Source: Ref 24
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 8 Effect of surface R a on XRD stress measurements. (a) X-ray penetration depth is greater than R a . (b) X-ray penetration depth is less than R a . Source: Ref 26
More
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 8 Effect of surface R a on x-ray diffraction stress measurements. (a) X-ray penetration depth is greater than R a . (b) X-ray penetration depth is less than R a . Source: Ref 35
More
Image
in Simulation of Microstructural Evolution in Steels
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 18 Five-hit hot compression test: flow-stress measurements vs. model predictions for V-HSLA steel. (a) Test conditions: temperature, 1100 °C; strain rate, 1.0/s; initial austenite grain size, 200 μm; interhit time, 1.0 s. (b) Test conditions: temperature, 1100 °C; strain rate, 1.0/s
More
Image
Published: 01 January 1986
Fig. 11 Effect of the stress gradient correction on the measurement of near-surface stresses for ground 4340 steel, 50 HRC.
More
Image
Published: 15 December 2019
Fig. 11 Effect of stress gradient correction on the measurement of near-surface stresses for ground 4340 steel (50 HRC)
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required...
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001761
EISBN: 978-1-62708-178-8
... Abstract In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, and the residual stress producing the strain is calculated, assuming a linear elastic distortion of the crystal lattice. This article provides a detailed account of the plane stress elastic...
Abstract
In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, and the residual stress producing the strain is calculated, assuming a linear elastic distortion of the crystal lattice. This article provides a detailed account of the plane stress elastic model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement. The article also outlines the applications of x-ray diffraction residual stress measurement with examples.
1