Skip Nav Destination
Close Modal
Search Results for
strain-hardened alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1023 Search Results for
strain-hardened alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006487
EISBN: 978-1-62708-207-5
... Abstract Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses...
Abstract
Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses the annealing of worked structures in terms of recovery, recrystallization, and grain coarsening. It summarizes some of the annealing treatments used in conjunction with fabrication by metal working, including preheating, interannealing, self-annealing, stabilization, and stoving. The article concludes with information on the key process parameters affecting the final properties of aluminum alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... Abstract This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered...
Abstract
This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered by American National Standards Institute (ANSI) standard H35.1. Furthermore, the article provides a short note on the designation of unregistered tempers.
Image
Published: 01 December 1998
Fig. 5 Strain-hardening curves for aluminum (1100), Al-Mn (3003) alloys, and Al-Mg (5050 and 5052) alloys
More
Image
Published: 30 November 2018
Fig. 4 Strain-hardening curves for annealed aluminum alloys plotted according to the relation in Eq 1 and substituting yield strength for true stress
More
Image
Published: 30 November 2018
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... 315–420 600–800 (a) The strain-hardening alloys must be processed on a declining temperature scale within the given range to preclude recrystallization. (b) Temperatures provided for this new high-temperature alloy are estimates based on older alloys HM21A, EK31A, and QE22A Texture...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006285
EISBN: 978-1-62708-169-6
... by extremely fine, dispersed second-phase particles are: solution heat treatment, quenching, and age hardening. Finally, the article also discusses the process parameters of annealing, including the effect of strain, effect of temperature, effect of heating rate, and the effect of alloy elements...
Abstract
Annealing is an essential treatment in the fabrication of metal parts and semiproducts. This article discusses the processes involved in annealing, namely, recovery, recrystallization, and grain coarsening. It lists the heat treatment conditions of processed aluminum alloys. It provides information on the types of heat treatment, which include preheating, full anneal, stabilization, and stoving. The article describes the steps involved for achieving the age-hardening effect and the strongest hardening effect in aluminum. The steps to increase the strength of aluminum alloys by extremely fine, dispersed second-phase particles are: solution heat treatment, quenching, and age hardening. Finally, the article also discusses the process parameters of annealing, including the effect of strain, effect of temperature, effect of heating rate, and the effect of alloy elements, and the effect of annealing on anisotropy.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002396
EISBN: 978-1-62708-193-1
... structural performance in service situations is a set of properties that characterize the cyclic deformation and fracture behavior of an alloy. These properties, which are related to alloy strength, ductility, and strain-hardening characteristics, provide a useful quantitative basis for assessing...
Abstract
This article reviews general trends in the cyclic response for representative commercial alloys to establish the spectrum of cyclic properties attainable through microstructural alteration. Individual alloy classes are examined in detail to assess the understanding of relationships between microstructure and fatigue resistance. These alloys classes include ferritic-pearlitic alloys, martensitic alloys, maraging steels, and metastable austenitic alloys. The article also discusses the role of internal defects and selective surface processing in influencing fatigue performance.
Book Chapter
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006531
EISBN: 978-1-62708-207-5
... the same time and temperature required for solution treatment and slow cooled to room temperature O2 Thermomechanically processed to enhance formability, such as required for superplastic forming O3 Homogenized H Strain hardened (i.e., for non-age-hardening alloys, wrought products only...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005143
EISBN: 978-1-62708-186-3
... aluminum to above medium-carbon steel in strength and work-hardening rate. A comparison of limiting draw ratio with the plastic-strain ratio ( r ) for ferrous and nonferrous alloys is shown in Fig. 12 . Increasing values of r and LDR reflect increasing drawability (see the section “Drawing and Stretch...
Abstract
This article reviews the general characteristics of copper and copper alloys and explains how these characteristics affect the behavior of strip in different types of forming operations. These forming operations include blanking, piercing, bending, drawing and stretch forming, spinning, rubber-pad forming, and contour roll forming. Specialized forming operations such as hydraulic forming, embossing and swaging, and high-velocity metal forming are also reviewed. The article discusses the forming of smaller and larger parts from copper and copper alloy strips, as well as their property requirements and applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005413
EISBN: 978-1-62708-196-2
..., stage IV work hardening, and the various classes of single-phase alloys. internal-state variable modeling plastic flow stress-strain behavior polycrystal modeling face-centered cubic metals strain rate diffusion hexagonal metals work hardening IF AN ABSOLUTELY PERFECT SINGLE CRYSTAL...
Abstract
This article focuses on the analyzing and modeling of stress-strain behavior of polycrystals of pure face-centered cubic (fcc) metals in the range of temperatures and strain rates where diffusion is not important. It presents a phenomenological description of stress-strain behavior and provides information on the physical background, alternative interpretations, and directions of research. The quantitative description of strain hardening of fcc polycrystals is provided. The article also discusses the modeling of stress-strain behavior in body-centered cubic metals, hexagonal metals, stage IV work hardening, and the various classes of single-phase alloys.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005183
EISBN: 978-1-62708-186-3
... Abstract Constitutive relations for metal-working include elements of behavior at ambient temperature as well as high-temperature response. This article presents the equations for the strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties...
Abstract
Constitutive relations for metal-working include elements of behavior at ambient temperature as well as high-temperature response. This article presents the equations for the strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties, followed by models of constitutive behavior. These models include the isothermal constitutive model and the physical model for superplastic flow. A formal description of the superposition of the operative mechanisms for dynamic recovery at hot-working strain rates is also provided. The article describes creep mechanisms that are useful for illustrating the strong stress dependence of dislocation and diffusional flow.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004020
EISBN: 978-1-62708-185-6
... Abstract The constitutive relations for metalworking include elements of behavior at ambient temperature as well as high-temperature response. This article presents equations for strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties...
Abstract
The constitutive relations for metalworking include elements of behavior at ambient temperature as well as high-temperature response. This article presents equations for strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties, followed by the models of constitutive behavior. It provides a discussion on creep mechanisms involving dislocation and diffusional flow, such as the Nabarro-Herring creep and the Coble creep. The equations for the several creep rates are also presented. Research on the mechanism of the superplastic flow in fine-grain metals has encompassed many ideas, such as the diffusional creep, dislocation creep with diffusional accommodation at grain boundaries, and concepts of grain-mantle deformation. The article concludes with information on the kinetics of superplastic deformation processes, including low stress behavior, concurrent grain growth, and high stress behavior.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003664
EISBN: 978-1-62708-182-5
... to IGA. It describes the most serious forms of structure-dependent corrosion, such as stress-corrosion cracking and exfoliation, in aluminum alloys including strain-Hardened 5xxx (Al-Mg) alloys and heat treated high-strength alloys. The article concludes with information on the evaluation tests for other...
Abstract
Most alloys are susceptible to intergranular corrosion, also known as intergranular attack (IGA), when exposed to specific environments. This article reviews the theory and application of acceptance tests for detecting the susceptibility of stainless steels and nickel-base alloys to IGA. It describes the most serious forms of structure-dependent corrosion, such as stress-corrosion cracking and exfoliation, in aluminum alloys including strain-Hardened 5xxx (Al-Mg) alloys and heat treated high-strength alloys. The article concludes with information on the evaluation tests for other alloys such as magnesium alloys and zinc die casting alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001423
EISBN: 978-1-62708-173-3
... puts some of the age-hardening constituents into solution. During slow cooling or reheating these constituents can reprecipitate, age harden, and produce a crack-susceptible condition in the HAZ. This will be the case regardless of the preweld heat treatment. Alloy 718 does not undergo strain-age...
Abstract
This article focuses on the physical metallurgy of nonferrous high-temperature materials that affects weldability on the precipitates used for age hardening (strain-age cracking). Those precipitates associated with solidification and solidification segregation, primarily Laves and carbides (heat-affected zone grain boundaries cracking), are also discussed. The article examines the parameters that affect heat-affected zone liquation cracking and presents a solution for each problem.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001422
EISBN: 978-1-62708-173-3
... their full strength and physical property potential. Yield-strength-level residual stresses are introduced by the welding thermal cycle. Direct age hardening of some of these alloys after welding can result in strain age cracking; this is particularly a problem with the aluminum/titanium-hardened alloys...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
... Abstract This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys...
Abstract
This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
... solution heat treatment strain hardening temper designations wrought aluminum alloys THE MOST WIDELY ACCEPTED alloy and temper designation system for aluminum and its alloys is the one maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI...
Abstract
The most widely accepted alloy and temper designation system for aluminum and its alloys is maintained by the Aluminum Association and recognized by the American National Standards Institute (ANSI) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1). This article provides a detailed discussion on the alloy and temper designation system for aluminum and its alloys. The Aluminum Association alloy designations are grouped as wrought and cast alloys. Lengthy tables provide information on alloying elements in wrought aluminum and aluminum alloys; nominal composition of aluminum alloy castings; typical mechanical properties of wrought and cast aluminum alloys in various temper conditions; and cross references to former and current cast aluminum alloy designations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
..., as fabricated: Applies to wrought or cast products made by shaping processes in which there is no special control over thermal conditions or strain-hardening processes employed to achieve specific properties. For wrought alloys, there are no mechanical property limits associated with this temper, although...
Abstract
Commercial aluminum alloys are classified based on how they are made and what they contain. This article describes the ANSI H35.1 designation system, which is widely used to classify wrought and cast aluminum alloys. The ANSI standard uses a four-digit numbering system to identify alloying elements, compositional modifications, purity levels, and product types. It also uses a multicharacter code to convey process-related details on heat treating, hardening, cooling, cold working, and other stabilization treatments. The article includes several large tables that provide extensive information on aluminum alloy and temper designations and how they correspond to critical mechanical properties as well as other designation systems.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
.... Differences appear at strain amplitudes beyond the elastic range as shown in Fig. 17 , where the monotonic and the cyclic stress-strain diagrams for six different engineering alloys are presented. When the cyclic curve is above (below) the monotonic curve, cyclic hardening (softening) is achieved. For many...
Abstract
The design of components against fatigue failure may involve several considerations of irregular loading, variable temperature, and environment. This article focuses on design considerations against fatigue related to material performance under mechanical loading at constant temperature. It reviews the traditional methods of fatigue design on smooth and notched components. The article discusses high-cycle fatigue in terms of fatigue strength and tensile strength, mean stress effects, stress concentration, and multiaxial fatigue. It describes low-cycle fatigue in terms of deformation behavior and concludes with a discussion on lifetime analysis based on a strain approach.
1