Skip Nav Destination
Close Modal
Search Results for
strain-control testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1333
Search Results for strain-control testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 August 2017
Fig. 23 Low-cycle (strain-controlled) testing of specimens to simulate conditions of crack initiation in a region of stress concentration. Fracture mechanics testing simulates crack growth rates after initiation.
More
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003313
EISBN: 978-1-62708-176-4
... Abstract The separation of the fatigue process into crack initiation and propagation phases has been an important and useful advance in engineering. The combined approach of strain-control testing and the development fracture mechanics of fatigue crack growth rates is a key advance that allows...
Abstract
The separation of the fatigue process into crack initiation and propagation phases has been an important and useful advance in engineering. The combined approach of strain-control testing and the development fracture mechanics of fatigue crack growth rates is a key advance that allows better understanding and simulation of both crack nucleation and the subsequent crack growth mechanisms. This article reviews three basic types of fatigue properties: stress-life, strain life, and fracture mechanic crack growth.
Image
Published: 30 November 2018
Fig. 8 Strain-controlled fatigue tests. Cyclic stress-strain curves for metal-matrix composite with alumina contents from 0 to 15%. AS, as-sintered; HT, heat treated, T6. Source: Ref 71
More
Image
Published: 30 November 2018
Fig. 9 Strain-controlled fatigue tests. Strain-life fatigue curves for metal-matrix composite with alumina contents from 0 to 15%. AS, as-sintered; HT, heat treated, T6. Source: Ref 71
More
Image
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 20 Cyclic load response during strain-controlled low-cycle fatigue test of annealed AISI 304 stainless steel in air at 816 °C (1500 °F). Total strain range, 3.26%, 0.056 Hz. (a) Cyclic load response for defining cyclic life to crack initiation. (b) Cyclic load range and ratio of tensile
More
Image
Published: 15 May 2022
Fig. 8 Environmental stress cracking fixtures for strain-controlled bent test according to (a) ISO 22088-3 and (b) ASTM D543, Practice B
More
Image
Published: 15 June 2019
Fig. 22 Strain range (Δε t ) vs. cycles to failure ( N f ) for axial strain-controlled testing of 5180-O sheet at room temperature. Solid symbols refer to load control after load stabilization. Source: Ref 40
More
Image
Published: 15 June 2019
Fig. 23 Strain range (Δε t ) versus cycles to failure ( N f ) for axial strain-controlled testing of 2036-T4 sheet at room temperature. Solid symbols refer to load control after load stabilization. Source: Ref 40
More
Image
Published: 01 January 1996
Fig. 11 Schematic representation of the cyclic strain resistance of idealized metals. Response to the strain-controlled testing has resulted in several generalizations of material behavior, which this figure displays in two different formats for a better appreciation of the descriptions
More
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003315
EISBN: 978-1-62708-176-4
..., and effective control over test variables. Results obtained with ultrasonic fatigue test methods are discussed with respect to strain-rate-dependent material behavior. Standardized procedures and test machinery for performing ultrasonic fatigue tests currently are not available. Historical Perspective...
Abstract
This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect to strain-rate-dependent material behavior. The article also provides information on the applications of the ultrasonic fatigue test.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009009
EISBN: 978-1-62708-185-6
... compression test, with the help of flow curves. The article illustrates the testing apparatus used in the cylindrical compression test. It describes the issues regarding friction and temperature, and strain-rate control with proper test equipment and experimental planning during the ring compression test...
Abstract
This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical compression test, with the help of flow curves. The article illustrates the testing apparatus used in the cylindrical compression test. It describes the issues regarding friction and temperature, and strain-rate control with proper test equipment and experimental planning during the ring compression test and plane-strain compression test. The article also reviews the testing conditions, procedures, and advantages of hot plane-strain compression test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
... testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally...
Abstract
An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability and product quality. These include strength, ductility, hardness, strain-hardening exponent, strain-rate effects, temperature effects, and hydrostatic pressure effects. The article also reviews the material behavior characteristics typically determined by mechanical testing methods. It discusses various mechanical testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally, the article details the various factors influencing workability in bulk deformation processes and formability in sheet-metal forming.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
... discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG. aluminum alloys cyclic fatigue fatigue crack growth microstructure precipitate-free zones shearable precipitates strain-control fatigue testing FATIGUE is the progressive...
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... load cells extensometry strain measuring devices environmental chambers graphic recorders furnaces heating systems baseline isothermal fatigue testing creep-fatigue interaction thermomechanical fatigue fatigue resistance Fatigue closed loop control advanced software tools fatigue life...
Abstract
This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial fatigue testing machines and bending fatigue machines. Load cells, grips and alignment devices, extensometry and strain measuring devices, environmental chambers, graphic recorders, furnaces, and heating systems of ancillary equipment are discussed. The article presents technologies available to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue interaction, and thermomechanical fatigue. The effects of various variables on fatigue resistance and guidelines for fatigue testing are also presented.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009004
EISBN: 978-1-62708-185-6
... are shown also. Tests were performed on the same alloy using controlled strain rate servohydraulic test equipment at strain rates of 5, 10, and 15 s −1 ; the third strain rate given is close to that in the production mechanical press. Figure 37 shows the surprising result that the fracture limit...
Abstract
This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification scheme, including testing procedures and specific process measurements, that facilitate the application of workability concepts. Using examples, the article applies these concepts to forging, rolling, and extrusion processes. The stress and strain environments described in the article suggest that a workability test should be capable of subjecting the material to a variety of surface strain combinations. By providing insights on fracture criteria, these tests can be used as tools for troubleshooting fracture problems in existing processes, as well as in the process development for new product designs.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003264
EISBN: 978-1-62708-176-4
... extension-under-load yield strength fish-bone diagram force material characteristics offset yield strength quality control strain stress stress-strain behavior tensile properties tensile strength tension test uniaxial tension testing upper yield strength THE TENSION TEST is one of the most...
Abstract
THE TENSION TEST is one of the most commonly used tests for evaluating materials. The material characteristics obtained from tension tests are used for quality control in production, for ranking performance of structural materials, for evaluation of alloys, and for dealing with the static-strength requirements of design. This article describes the stress-strain behavior during a tension test and provides the definition of terms such as stress, force, strain, and elongation. It explains the tensile properties obtained from the test results: the tensile strength and yield strength, which includes offset yield strength, extension-under-load yield strength, and upper yield strength. The article concludes with a description of the general procedures for conducting the tension test based on ASTM standards and the variability of tensile properties.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... problems and make mistakes. A qualitative comparison of Fig. 15 and 16 drives home the point: two fatigue studies, done by the same research group, using the same equipment, material preparation, and test methods, with one conducted in stress control ( Fig. 15 ) and the other in strain control ( Fig...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002350
EISBN: 978-1-62708-193-1
... 31 , any of the following may be used as the failure criterion: separation, modulus ratio, microcracking (“initiation”), or percentage of maximum load drop. Testing for strain-life data is not as straightforward as the simple load-controlled (stress-controlled) S - N testing. Monitoring...
Abstract
Fatigue properties are an integral part of materials comparison activities and offer information for structural life estimation in many engineering applications. This article presents three general approaches to fatigue design, with a discussion on their respective attributes. These include infinite-life criterion, finite-life criterion, and damage tolerant criterion. The article describes the individual property requirements of these approaches. It also presents selected examples of properties that reflect some detail of these approaches.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002348
EISBN: 978-1-62708-193-1
... greatly advanced by the combined methods of strain-control testing and the development fracture mechanics of fatigue crack growth rates. This combined approach ( Fig. 1 ) is a key advance that allows better understanding and simulation of both crack nucleation in regions of localized strain...
Abstract
This article provides ASTM standard definitions for fatigue and describes the approaches that are used to design finite or infinite life, used in a complementary sense in fatigue design. It explains four distinct phases of fatigue: nucleation, structurally dependent crack propagation, crack propagation, and final instability. The article discusses the significant role that fatigue plays in industrial design applications.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
... and shutdown operations. The elastically stressed neighborhood limited the strains of the inelastic deformation region associated with stress riser. The plastic zone is considered to be under strain control by the surrounding elastic material. In testing, strain control eliminates potentially large strains...
Abstract
The design of components against fatigue failure may involve several considerations of irregular loading, variable temperature, and environment. This article focuses on design considerations against fatigue related to material performance under mechanical loading at constant temperature. It reviews the traditional methods of fatigue design on smooth and notched components. The article discusses high-cycle fatigue in terms of fatigue strength and tensile strength, mean stress effects, stress concentration, and multiaxial fatigue. It describes low-cycle fatigue in terms of deformation behavior and concludes with a discussion on lifetime analysis based on a strain approach.
1