1-20 of 380 Search Results for

strain-age embrittlement

Sort by
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
... embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition, the article covers stress-corrosion cracking along with properties...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... is very complex. No engineering component is immune from changes in material properties from mechanical strain, gross damage, and change in material microstructure or embrittlement. Complex engineering failures also can result from simultaneous multiple alterations. Fracture Modes and Mechanisms...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... from changes in material properties from mechanical strain, gross damage, and change in material microstructure or embrittlement. Complex engineering failures also may result from simultaneous multiple alterations. Fracture Modes and Mechanisms When dealing with a fracture (not all failures...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
..., and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
... treatment (quench aging in with passivation. ferrous alloys, natural or arti cial aging in fer- which the specimens are intermittently ex- rous and nonferrous alloys) or after a cold- posed to a liquid medium at de nite time in- active. The negative direction of electrode po- working operation (strain aging...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Book Chapter

By Bruce Craig
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003634
EISBN: 978-1-62708-182-5
... to 1290 °F) … … … … … … Strain rate important; embrittlement more severe at low strain rate; generally more severe in notched or precracked specimens Strain rate important; embrittlement more severe at low strain rate; always more severe in notched or precracked specimens Occurs in absence...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
... Quench-age embrittlement Graphitization Strain-age embrittlement Aluminum nitride embrittlement Temper Embrittlement and Tempered Martensite Embrittlement In many classes of steels, two of the most important metallurgical embrittlement phenomena are temper embrittlement and tempered...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002384
EISBN: 978-1-62708-193-1
... common mechanisms are hydrogen embrittlement, strain aging, and temper embrittlement. Each of these mechanisms can reduce the toughness of the material, either soon after welding or during service. There are many catastrophic failures associated with these embrittlement mechanisms ( Ref 35...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... their resistance against creep and temper embrittlement. However, HSLA steels, which are discussed in the article “High-Strength Structural and High-Strength Low-Alloy Steels” in this Volume, may be effective substitutes for carbon steels in elevated-temperature applications. Another category of ferritic steels...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003667
EISBN: 978-1-62708-182-5
... beam tests, rising step-load tests, and slow strain rate tensile tests. It also describes the interpretation of test results and how to control hydrogen embrittlement during production. cantilever beam test contoured double-cantilever beam test hydrogen hydrogen embrittlement rising step-load...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
... in the grain boundaries, and at high temperature, the influence of strain on precipitation can be the actual deformation occurring during the hot tension test ( Ref 4 ). This effect is known as strain-age embrittlement. Fig. 8 Effect of testing temperature on tensile strength of ordinary mild steel...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001834
EISBN: 978-1-62708-181-8
... fractures, and high-temperature fractures. brittle fracture cold cracking deep-field microscopy ductile fracture embrittlement etching fatigue fracture fracture replica light microscopy macroscopic examination quality control taper sectioning visual inspection THE VISUAL EXAMINATION...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002388
EISBN: 978-1-62708-193-1
... rate may be at a higher value, as is often the case with internal hydrogen embrittlement, or there may be no critical value, which occurs when the susceptibility decreases with decreasing strain rate. This has been observed in cases where the mechanism of SCC is thought to be hydrogen embrittlement...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005167
EISBN: 978-1-62708-186-3
... but also reduces ductility. The ductility is lowest at approximately 650 °C (1200 °F) and then increases with temperature. This reduced ductility is caused by strain aging, which is characteristic of body-centered cubic metals. Fig. 2 Effect of temperature on strength and elongation of vacuum...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
... orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
...—for example, the presence of a triaxial state of stress (as adjacent to the root of a notch), material embrittlement (as by hydrogen or stress corrosion), or when a steel is subjected to high strain rates (such as impact loading) within the ductile-to-brittle transition range. Flutes Fractography has...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002403
EISBN: 978-1-62708-193-1
... aged in the region of 480 to 700 °C (895 to 1290 °F). It has been recognized for some time that duplex grades with 20 to 40 vol% ferrite exhibit excellent resistance to intergranular corrosion. 475 °C Embrittlement Iron-chromium alloys containing 13 to 90% Cr are susceptible to embrittlement...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... are susceptible to two types of embrittlement associated with the tempering of martensitic structures: blue brittleness and temper embrittlement. Both are discussed below. Blue Brittleness Strain aging between 230 and 370 °C (450 and 700 °F) produces blue brittleness. Medium- or high-carbon steel tempered...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... Charpy V-notch energy curves for 9Cr-W-V steel as tempered Fracture Mechanics Several degradation mechanisms embrittle Cr-Mo and Cr-W-Mo steels and their weldments: temper embrittlement during long-time exposure, aging embrittlement due to precipitation of brittle phases, creep damage, hydrogen...