1-20 of 183 Search Results for

strain life curve

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006462
EISBN: 978-1-62708-190-0
... either a deterministic or probabilistic framework. Fatigue is perhaps the most widely encountered damage mechanism ( Ref 18 ), and two major design philosophies have been employed: safe-life (based on either stress versus life-cycle or strain versus life-cycle curves, Ref 19 ) and damage tolerant (based...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
...-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them. compression testing fatigue testing formability testing fracture testing hardness...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... scratches perpendicular to the loading direction. Smooth SCC specimens allow for the evaluation of the total SCC life, which includes crack nucleation and propagation. Testing can be conducted under constant extension or strain, constant load, and constant extension or strain rate. The selection of a...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... design concepts Design philosophy Design concept Material characteristics Safe-life, infinite-life Nominal stress or local stress concept S - N curve, S a = f ( N F ) Fatigue diagram, S a = f ( S m ) Safe-life, finite-life Local strain concept Low-cycle fatigue curve...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... (HCF) or plastic strain-based criteria for low-cycle fatigue (LCF) have been applied based on transfer of results from tests on relatively small-scale unnotched laboratory specimens to structural components ( Ref 1 ) to estimate crack initiation life. Similarly, test results for crack propagation in...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... or more output parameters, where those output parameters may include a prediction of factors such as operating stress, strain, deflection, deformation, wear rate, fatigue strength, creep strength, or service life. In reality, virtually all material properties and design parameters exhibit some...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... Variation in plain strain-fracture toughness with yield strength of alloys A206.0, A357.0, and A356.0 Fig. 5 Stress-life fatigue data at three test temperatures for alloy A201-T7 Fig. 6 Stress-life fatigue data at three test temperatures for alloy A357-T6 ...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006473
EISBN: 978-1-62708-190-0
... reviews the determination of area-amplitude and distance-amplitude curves of a straight-beam pulse-echo ultrasonic inspection system. The article discusses the three principal conventional manual ultrasonic sizing techniques: 6 dB drop technique, maximum-amplitude technique, and 20 dB drop technique. It...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005403
EISBN: 978-1-62708-196-2
... (a) Stress-strain diagram of dynamic recovery and dynamic recrystallization (DRX) flow curves. The critical strain, ε c , and peak strain, ε p , are identified. The amount of softening attributable to DRX is defined as σ recov − σ. The fractional softening X is then given by the following...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... Abstract The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... Source: Ref 3 When designing with engineering plastics, it is generally best to choose the properties region in which the response of the material is still elastic. This is called the proportional region in a stress-strain curve, which obeys Hookean laws, and is the region where conventional...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
... that significantly affect the fracture propagation rate and fracture appearance. The external environment includes hydrogen, corrosive media, low-melting metals, state of stress, strain rate, and temperature. The mechanism of stress-corrosion cracking in metals such as steels, aluminum, brass, and...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005947
EISBN: 978-1-62708-166-5
... in large plastic deformation: A stress of 65 MPa (9.4 ksi) at 700 °C (1290 °F) leads to a plastic strain of 0.2% ( Fig. 11b ). Fig. 11 (a) Yield limit of spheroidized and annealed SAE 52100 as a function of temperature. (b) Corresponding stress-strain curves; strain rate: 40 × 10 −4 1/s...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... Abstract The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003975
EISBN: 978-1-62708-185-6
... equipment so that forgings will be on match and there will be a minimum of strain on the equipment and wear on the dies. Dies correctly and properly handled are normally capable of producing thousands of uniform forgings of identical shape and size. An alternative method for sinking dies uses...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... gradients in stress (strain) and temperature. An example of a creep-related crack is shown in Fig. 2 . Cracks can develop at a critical location and propagate to failure before the end of the predicted creep-rupture life. Creep cracking can also originate at a stress concentration or at preexisting defects...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... elastic deformations, the strain experienced by a metal under some applied load is a manifestation of changes in bond lengths in the crystal. The shape of the potential energy curve for the bonds determines the load required to cause a given amount of deformation, which in turn determines the elastic...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
.... Fig. 7 Typical stress-strain curve for Nitinol deformed to fracture above its M d temperature, where it can no longer transform to martensite. In this case, the specimen is 50.8 at.% Ni wire, and the test temperature is 160 °C (320 °F). Fig. 8 Martensite has the unique ability to shift...