Skip Nav Destination
Close Modal
By
R.J. Bucci, G. Nordmark, E.A. Starke, Jr.
By
M.R. Mitchell
By
Gary R. Halford, Bradley A. Lerch, Michael A. McGaw
Search Results for
strain control fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1015
Search Results for strain control fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Strain control fatigue life as a function of elastic-, plastic-, total-stra...
Available to PurchasePublished: 01 January 1996
Fig. 31 Strain control fatigue life as a function of elastic-, plastic-, total-strain amplitude
More
Image
Strain-controlled fatigue tests. Strain-life fatigue curves for metal-matri...
Available to PurchasePublished: 30 November 2018
Fig. 9 Strain-controlled fatigue tests. Strain-life fatigue curves for metal-matrix composite with alumina contents from 0 to 15%. AS, as-sintered; HT, heat treated, T6. Source: Ref 71
More
Image
Stress-strain hysteresis in a constant-amplitude strain-controlled fatigue ...
Available to PurchasePublished: 01 January 1996
Fig. 9 Stress-strain hysteresis in a constant-amplitude strain-controlled fatigue test. Source: Ref 32
More
Image
Strain-controlled fatigue tests. Cyclic stress-strain curves for metal-matr...
Available to PurchasePublished: 30 November 2018
Fig. 8 Strain-controlled fatigue tests. Cyclic stress-strain curves for metal-matrix composite with alumina contents from 0 to 15%. AS, as-sintered; HT, heat treated, T6. Source: Ref 71
More
Image
Stress-strain hysteresis in (a) constant-amplitude strain-controlled fatigu...
Available to PurchasePublished: 15 June 2019
Fig. 21 Stress-strain hysteresis in (a) constant-amplitude strain-controlled fatigue test and (b) several generalizations of material behavior. Source: Ref 38
More
Image
Effect of elevated temperature on strain-controlled fatigue behavior of ann...
Available to Purchase
in Elevated-Temperature Properties of Ferritic Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 54 Effect of elevated temperature on strain-controlled fatigue behavior of annealed 2 1 4 Cr-1Mo steel. Strain rate was greater than 4 mm/m · s. Source: Ref 84
More
Image
Low-cycle strain-controlled fatigue behavior of cast and wrought carbon ste...
Available to PurchasePublished: 01 December 2008
Fig. 19 Low-cycle strain-controlled fatigue behavior of cast and wrought carbon steels in the normalized-and-tempered condition
More
Image
Fatigue crack-initiation site in Ti-6Al-4V subjected to strain-control low-...
Available to PurchasePublished: 01 June 2024
Fig. 31 Fatigue crack-initiation site in Ti-6Al-4V subjected to strain-control low-cycle fatigue showing isolated faceted primary α separated by cyclic ductile tearing. Morphology such as this typically correlates to longer fatigue lifetime.
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006549
EISBN: 978-1-62708-210-5
... Abstract This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article...
Abstract
This article describes the effects of cyclic fatigue properties on aluminum alloys. It provides a discussion on strain-control fatigue and the effects of two microstructural features on the strain life of aluminum alloys: shearable precipitates and precipitate-free zones. The article discusses various models of fatigue crack growth (FCG) and the effects of alloy microstructure and composition on FCG.
Image
Strain-controlled matrix fatigue data plotted in terms of the effective str...
Available to PurchasePublished: 01 January 1996
Fig. 26 Strain-controlled matrix fatigue data plotted in terms of the effective strain criterion. Source: Ref 49
More
Image
Cyclic load response during strain-controlled low-cycle fatigue test of ann...
Available to Purchase
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 20 Cyclic load response during strain-controlled low-cycle fatigue test of annealed AISI 304 stainless steel in air at 816 °C (1500 °F). Total strain range, 3.26%, 0.056 Hz. (a) Cyclic load response for defining cyclic life to crack initiation. (b) Cyclic load range and ratio of tensile
More
Image
Fracture surface of samples broken using strain-controlled low-cycle fatigu...
Available to PurchasePublished: 31 August 2017
Fig. 28 Fracture surface of samples broken using strain-controlled low-cycle fatigue (LCF) tests at 400 °C (752 °F) on ductile cast iron. Chemical composition: 3.0–3.6% C, 3.8–4.4% Si, <0.5% Mn, <0.04% P, <0.02% S, 0.5–0.7% Mo, bal Fe. Intergranular fracture could be attributed
More
Book Chapter
Fatigue and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003313
EISBN: 978-1-62708-176-4
... Abstract The separation of the fatigue process into crack initiation and propagation phases has been an important and useful advance in engineering. The combined approach of strain-control testing and the development fracture mechanics of fatigue crack growth rates is a key advance that allows...
Abstract
The separation of the fatigue process into crack initiation and propagation phases has been an important and useful advance in engineering. The combined approach of strain-control testing and the development fracture mechanics of fatigue crack growth rates is a key advance that allows better understanding and simulation of both crack nucleation and the subsequent crack growth mechanisms. This article reviews three basic types of fatigue properties: stress-life, strain life, and fracture mechanic crack growth.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002350
EISBN: 978-1-62708-193-1
... of this type is formed during every constant-amplitude test and should be recorded as part of test procedures. Fig. 9 Stress-strain hysteresis in a constant-amplitude strain-controlled fatigue test. Source: Ref 32 Any given stabilized hysteresis loop represents only one of many such loops...
Abstract
Fatigue properties are an integral part of materials comparison activities and offer information for structural life estimation in many engineering applications. This article presents three general approaches to fatigue design, with a discussion on their respective attributes. These include infinite-life criterion, finite-life criterion, and damage tolerant criterion. The article describes the individual property requirements of these approaches. It also presents selected examples of properties that reflect some detail of these approaches.
Book Chapter
Selecting Aluminum Alloys to Resist Failure by Fracture Mechanisms
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
... fracture resistance fracture toughness high-strength wrought aluminum products microstructure precipitate shearing S-N fatigue strain control fatigue stress-corrosion cracking ratings stress-corrosion cracking resistance tensile properties thermal treatment Though virtually all design...
Abstract
This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought aluminum products. It analyzes the selection of various alloys for stress-corrosion cracking resistance, including aluminum-lithium alloys, copper-free 7XXX alloys, and casting alloys. The article presents a list of typical tensile properties and fatigue limit of aluminum alloys. It also describes the effects of composition, microstructure, thermal treatments, and processing in fatigue crack growth of aluminum alloys.
Book Chapter
Fundamentals of Modern Fatigue Analysis for Design
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002364
EISBN: 978-1-62708-193-1
... is also referred to “Recommended Practice for Strain Controlled Fatigue Testing,” ASTM E606-92, for the methodology involved in performing such tests. Determination of constant-amplitude fatigue lives of specimens is customarily performed under conditions of controlled stress (as in the rotating...
Abstract
Fatigue crack initiation is an important aspect of materials performance in design. This article summarizes some fundamental concepts and procedures for the fatigue life prediction of relatively homogeneous, wrought metals when a major portion of total life is exhausted in crack initiation. It presents an overview of the strain-based, as opposed to stress-based, criterion of material behavior and fatigue analysis. The article describes the cyclic stress-strain behavior of metals to illustrate the inadequacy of the monotonic or tensile stress-strain curve in accounting for material instabilities caused by cyclic deformations. It discusses the effect of mean stress on fatigue life and presents the analysis of cumulative fatigue damage. The article concludes with examples of application techniques for fatigue life prediction.
Book Chapter
Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... load cells extensometry strain measuring devices environmental chambers graphic recorders furnaces heating systems baseline isothermal fatigue testing creep-fatigue interaction thermomechanical fatigue fatigue resistance Fatigue closed loop control advanced software tools fatigue life...
Abstract
This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial fatigue testing machines and bending fatigue machines. Load cells, grips and alignment devices, extensometry and strain measuring devices, environmental chambers, graphic recorders, furnaces, and heating systems of ancillary equipment are discussed. The article presents technologies available to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue interaction, and thermomechanical fatigue. The effects of various variables on fatigue resistance and guidelines for fatigue testing are also presented.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003668
EISBN: 978-1-62708-182-5
... Load Fatigue Testing System” 23 E 468 “Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials” 24 E 606 “Standard Practices for Strain-Controlled Fatigue Testing” 25 E 647 “Standard Test Method for Measurement of Fatigue Crack Growth...
Abstract
This article discusses the basic approach for predicting the corrosion-fatigue life of structural components. It describes two types of tests that are normally used in combination: cycles-to-failure tests, which focus on crack initiation, and crack propagation tests, which focus on crack growth rates under cyclic load. The article examines corrosion-fatigue cracking along with the effects of cracking due to stress corrosion and hydrogen embrittlement, which often occur together. It explains how test parameters such as loading and environmental conditions impact crack growth mechanisms and data interpretation.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... problems and make mistakes. A qualitative comparison of Fig. 15 and 16 drives home the point: two fatigue studies, done by the same research group, using the same equipment, material preparation, and test methods, with one conducted in stress control ( Fig. 15 ) and the other in strain control ( Fig...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... the first to provide fatigue of polymers using this technique. Strain-controlled tests are often employed in fatigue of metals ( Ref 8 , 9 ) to produce a strain-life curve and, most importantly, a cyclic stress-strain curve to describe the response of these materials to variable strain amplitude...
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
1